|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: smolm-autoreg-bpe-counterfactual_babylm_anans_new-seed_211-1e-4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# smolm-autoreg-bpe-counterfactual_babylm_anans_new-seed_211-1e-4 |
|
|
|
This model was trained from scratch on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.4227 |
|
- Accuracy: 0.4063 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 211 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 32000 |
|
- num_epochs: 20.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:------:|:---------------:|:--------:| |
|
| 4.0574 | 1.0 | 18595 | 4.2623 | 0.3095 | |
|
| 3.5744 | 2.0 | 37190 | 3.7410 | 0.3630 | |
|
| 3.3998 | 3.0 | 55785 | 3.5874 | 0.3791 | |
|
| 3.2911 | 4.0 | 74380 | 3.5155 | 0.3873 | |
|
| 3.2246 | 5.0 | 92975 | 3.4782 | 0.3919 | |
|
| 3.1723 | 6.0 | 111570 | 3.4440 | 0.3962 | |
|
| 3.1287 | 7.0 | 130165 | 3.4271 | 0.3987 | |
|
| 3.0994 | 8.0 | 148760 | 3.3990 | 0.4007 | |
|
| 3.0668 | 9.0 | 167355 | 3.4112 | 0.4018 | |
|
| 3.0398 | 10.0 | 185950 | 3.3915 | 0.4033 | |
|
| 3.0097 | 11.0 | 204545 | 3.4067 | 0.4037 | |
|
| 2.9924 | 12.0 | 223140 | 3.4117 | 0.4039 | |
|
| 2.9702 | 13.0 | 241735 | 3.3926 | 0.4054 | |
|
| 2.9486 | 14.0 | 260330 | 3.4035 | 0.4053 | |
|
| 2.9284 | 15.0 | 278925 | 3.4107 | 0.4056 | |
|
| 2.9143 | 16.0 | 297520 | 3.4057 | 0.4061 | |
|
| 2.8931 | 17.0 | 316115 | 3.4160 | 0.4058 | |
|
| 2.8785 | 18.0 | 334710 | 3.4139 | 0.4063 | |
|
| 2.8611 | 19.0 | 353305 | 3.4191 | 0.4062 | |
|
| 2.8443 | 20.0 | 371900 | 3.4227 | 0.4063 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.0 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.2 |
|
|