|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- kanishka/counterfactual-babylm-pipps_removal |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: smolm-autoreg-bpe-counterfactual-babylm-pipps_removal-seed_211-1e-3 |
|
results: |
|
- task: |
|
name: Causal Language Modeling |
|
type: text-generation |
|
dataset: |
|
name: kanishka/counterfactual-babylm-pipps_removal |
|
type: kanishka/counterfactual-babylm-pipps_removal |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.40999993080367236 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# smolm-autoreg-bpe-counterfactual-babylm-pipps_removal-seed_211-1e-3 |
|
|
|
This model was trained from scratch on the kanishka/counterfactual-babylm-pipps_removal dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.4007 |
|
- Accuracy: 0.4100 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 211 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 32000 |
|
- num_epochs: 20.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:------:|:---------------:|:--------:| |
|
| 3.6079 | 1.0 | 18593 | 3.8149 | 0.3576 | |
|
| 3.3841 | 2.0 | 37186 | 3.5902 | 0.3792 | |
|
| 3.2548 | 3.0 | 55779 | 3.4807 | 0.3918 | |
|
| 3.1845 | 4.0 | 74372 | 3.4469 | 0.3968 | |
|
| 3.1246 | 5.0 | 92965 | 3.4169 | 0.4014 | |
|
| 3.0823 | 6.0 | 111558 | 3.3873 | 0.4035 | |
|
| 3.0457 | 7.0 | 130151 | 3.3857 | 0.4053 | |
|
| 3.0112 | 8.0 | 148744 | 3.3520 | 0.4070 | |
|
| 2.9878 | 9.0 | 167337 | 3.3733 | 0.4072 | |
|
| 2.96 | 10.0 | 185930 | 3.3503 | 0.4083 | |
|
| 2.938 | 11.0 | 204523 | 3.3664 | 0.4084 | |
|
| 2.9158 | 12.0 | 223116 | 3.3660 | 0.4093 | |
|
| 2.8919 | 13.0 | 241709 | 3.3564 | 0.4101 | |
|
| 2.8735 | 14.0 | 260302 | 3.3567 | 0.4107 | |
|
| 2.8562 | 15.0 | 278895 | 3.3675 | 0.4100 | |
|
| 2.8344 | 16.0 | 297488 | 3.3702 | 0.4103 | |
|
| 2.814 | 17.0 | 316081 | 3.3808 | 0.4101 | |
|
| 2.7973 | 18.0 | 334674 | 3.3935 | 0.4098 | |
|
| 2.7732 | 19.0 | 353267 | 3.3887 | 0.4104 | |
|
| 2.7585 | 20.0 | 371860 | 3.4007 | 0.4100 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|