kanishka's picture
End of training
e3d39f7 verified
metadata
tags:
  - generated_from_trainer
datasets:
  - kanishka/counterfactual-babylm-pipps_removal
metrics:
  - accuracy
model-index:
  - name: smolm-autoreg-bpe-counterfactual-babylm-pipps_removal-seed_1024-1e-3
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: kanishka/counterfactual-babylm-pipps_removal
          type: kanishka/counterfactual-babylm-pipps_removal
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4102895476662934

smolm-autoreg-bpe-counterfactual-babylm-pipps_removal-seed_1024-1e-3

This model was trained from scratch on the kanishka/counterfactual-babylm-pipps_removal dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4120
  • Accuracy: 0.4103

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.5992 1.0 18593 3.7873 0.3590
3.3841 2.0 37186 3.5957 0.3798
3.2517 3.0 55779 3.4368 0.3935
3.1729 4.0 74372 3.4158 0.3977
3.1228 5.0 92965 3.4132 0.4017
3.074 6.0 111558 3.3903 0.4035
3.0396 7.0 130151 3.3731 0.4067
3.0136 8.0 148744 3.3697 0.4065
2.9841 9.0 167337 3.3754 0.4067
2.9561 10.0 185930 3.3766 0.4088
2.9356 11.0 204523 3.3834 0.4089
2.9099 12.0 223116 3.3625 0.4105
2.8924 13.0 241709 3.3680 0.4097
2.8738 14.0 260302 3.3766 0.4103
2.8485 15.0 278895 3.3746 0.4108
2.834 16.0 297488 3.3823 0.4107
2.8108 17.0 316081 3.3894 0.4108
2.7936 18.0 334674 3.4001 0.4101
2.7783 19.0 353267 3.4030 0.4107
2.755 20.0 371860 3.4120 0.4103

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1