metadata
tags:
- generated_from_trainer
datasets:
- kanishka/counterfactual-babylm-pipps_removal
metrics:
- accuracy
model-index:
- name: smolm-autoreg-bpe-counterfactual-babylm-pipps_removal-seed_1024-1e-3
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: kanishka/counterfactual-babylm-pipps_removal
type: kanishka/counterfactual-babylm-pipps_removal
metrics:
- name: Accuracy
type: accuracy
value: 0.4102895476662934
smolm-autoreg-bpe-counterfactual-babylm-pipps_removal-seed_1024-1e-3
This model was trained from scratch on the kanishka/counterfactual-babylm-pipps_removal dataset. It achieves the following results on the evaluation set:
- Loss: 3.4120
- Accuracy: 0.4103
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.5992 | 1.0 | 18593 | 3.7873 | 0.3590 |
3.3841 | 2.0 | 37186 | 3.5957 | 0.3798 |
3.2517 | 3.0 | 55779 | 3.4368 | 0.3935 |
3.1729 | 4.0 | 74372 | 3.4158 | 0.3977 |
3.1228 | 5.0 | 92965 | 3.4132 | 0.4017 |
3.074 | 6.0 | 111558 | 3.3903 | 0.4035 |
3.0396 | 7.0 | 130151 | 3.3731 | 0.4067 |
3.0136 | 8.0 | 148744 | 3.3697 | 0.4065 |
2.9841 | 9.0 | 167337 | 3.3754 | 0.4067 |
2.9561 | 10.0 | 185930 | 3.3766 | 0.4088 |
2.9356 | 11.0 | 204523 | 3.3834 | 0.4089 |
2.9099 | 12.0 | 223116 | 3.3625 | 0.4105 |
2.8924 | 13.0 | 241709 | 3.3680 | 0.4097 |
2.8738 | 14.0 | 260302 | 3.3766 | 0.4103 |
2.8485 | 15.0 | 278895 | 3.3746 | 0.4108 |
2.834 | 16.0 | 297488 | 3.3823 | 0.4107 |
2.8108 | 17.0 | 316081 | 3.3894 | 0.4108 |
2.7936 | 18.0 | 334674 | 3.4001 | 0.4101 |
2.7783 | 19.0 | 353267 | 3.4030 | 0.4107 |
2.755 | 20.0 | 371860 | 3.4120 | 0.4103 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1