kanishka's picture
Model save
7cc2509 verified
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: smolm-autoreg-bpe-counterfactual-babylm-pipps_10k-1e-3
    results: []

smolm-autoreg-bpe-counterfactual-babylm-pipps_10k-1e-3

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3378
  • Accuracy: 0.4121

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.6013 1.0 18720 3.7465 0.3588
3.3867 2.0 37440 3.4883 0.3819
3.2589 3.0 56160 3.4083 0.3943
3.1811 4.0 74880 3.3900 0.3986
3.1273 5.0 93600 3.3351 0.4020
3.0824 6.0 112320 3.3293 0.4028
3.0466 7.0 131040 3.3131 0.4065
3.0117 8.0 149760 3.2990 0.4092
2.9899 9.0 168480 3.2979 0.4097
2.9556 10.0 187200 3.2939 0.4105
2.9395 11.0 205920 3.2948 0.4120
2.9155 12.0 224640 3.3005 0.4110
2.8971 13.0 243360 3.2907 0.4126
2.8777 14.0 262080 3.2993 0.4121
2.8546 15.0 280800 3.2985 0.4128
2.8337 16.0 299520 3.2980 0.4130
2.8153 17.0 318240 3.3254 0.4116
2.799 18.0 336960 3.3345 0.4114
2.7824 19.0 355680 3.3410 0.4117
2.7614 20.0 374400 3.3378 0.4121

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.14.1