|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- kanishka/counterfactual-babylm-only_other_det_removal |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: smolm-autoreg-bpe-counterfactual-babylm-only_other_det_removal-1e-3 |
|
results: |
|
- task: |
|
name: Causal Language Modeling |
|
type: text-generation |
|
dataset: |
|
name: kanishka/counterfactual-babylm-only_other_det_removal |
|
type: kanishka/counterfactual-babylm-only_other_det_removal |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.4116416836738053 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# smolm-autoreg-bpe-counterfactual-babylm-only_other_det_removal-1e-3 |
|
|
|
This model was trained from scratch on the kanishka/counterfactual-babylm-only_other_det_removal dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.4193 |
|
- Accuracy: 0.4116 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 32000 |
|
- num_epochs: 20.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:------:|:---------------:|:--------:| |
|
| 3.6043 | 1.0 | 18597 | 3.7893 | 0.3595 | |
|
| 3.3863 | 2.0 | 37194 | 3.5796 | 0.3811 | |
|
| 3.2568 | 3.0 | 55791 | 3.4811 | 0.3933 | |
|
| 3.1802 | 4.0 | 74388 | 3.4316 | 0.3992 | |
|
| 3.1237 | 5.0 | 92985 | 3.3913 | 0.4033 | |
|
| 3.0797 | 6.0 | 111582 | 3.4136 | 0.4042 | |
|
| 3.0447 | 7.0 | 130179 | 3.3948 | 0.4058 | |
|
| 3.0084 | 8.0 | 148776 | 3.3772 | 0.4079 | |
|
| 2.985 | 9.0 | 167373 | 3.3589 | 0.4101 | |
|
| 2.9555 | 10.0 | 185970 | 3.3777 | 0.4096 | |
|
| 2.9324 | 11.0 | 204567 | 3.3606 | 0.4110 | |
|
| 2.9092 | 12.0 | 223164 | 3.3722 | 0.4112 | |
|
| 2.89 | 13.0 | 241761 | 3.3737 | 0.4114 | |
|
| 2.8651 | 14.0 | 260358 | 3.3934 | 0.4110 | |
|
| 2.8499 | 15.0 | 278955 | 3.3911 | 0.4116 | |
|
| 2.8292 | 16.0 | 297552 | 3.3942 | 0.4114 | |
|
| 2.8105 | 17.0 | 316149 | 3.4117 | 0.4113 | |
|
| 2.7877 | 18.0 | 334746 | 3.4073 | 0.4116 | |
|
| 2.773 | 19.0 | 353343 | 3.4169 | 0.4115 | |
|
| 2.7535 | 20.0 | 371940 | 3.4193 | 0.4116 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|