metadata
tags:
- generated_from_trainer
datasets:
- kanishka/counterfactual-babylm-only_measure_nps_as_singular_removal
metrics:
- accuracy
model-index:
- name: >-
smolm-autoreg-bpe-counterfactual-babylm-only_measure_nps_as_singular_removal-seed_211-1e-3
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: kanishka/counterfactual-babylm-only_measure_nps_as_singular_removal
type: kanishka/counterfactual-babylm-only_measure_nps_as_singular_removal
metrics:
- name: Accuracy
type: accuracy
value: 0.40923404527178003
smolm-autoreg-bpe-counterfactual-babylm-only_measure_nps_as_singular_removal-seed_211-1e-3
This model was trained from scratch on the kanishka/counterfactual-babylm-only_measure_nps_as_singular_removal dataset. It achieves the following results on the evaluation set:
- Loss: 3.4372
- Accuracy: 0.4092
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 211
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.6018 | 1.0 | 18600 | 3.7779 | 0.3590 |
3.3799 | 2.0 | 37200 | 3.5990 | 0.3799 |
3.2535 | 3.0 | 55800 | 3.4629 | 0.3928 |
3.1731 | 4.0 | 74400 | 3.4447 | 0.3979 |
3.1186 | 5.0 | 93000 | 3.4295 | 0.4009 |
3.0776 | 6.0 | 111600 | 3.4004 | 0.4034 |
3.0407 | 7.0 | 130200 | 3.3850 | 0.4053 |
3.0066 | 8.0 | 148800 | 3.3648 | 0.4061 |
2.9851 | 9.0 | 167400 | 3.3985 | 0.4074 |
2.953 | 10.0 | 186000 | 3.3964 | 0.4077 |
2.9321 | 11.0 | 204600 | 3.3816 | 0.4088 |
2.9082 | 12.0 | 223200 | 3.3780 | 0.4093 |
2.8881 | 13.0 | 241800 | 3.4020 | 0.4090 |
2.8698 | 14.0 | 260400 | 3.4057 | 0.4091 |
2.8441 | 15.0 | 279000 | 3.3906 | 0.4094 |
2.8256 | 16.0 | 297600 | 3.4051 | 0.4094 |
2.808 | 17.0 | 316200 | 3.4108 | 0.4093 |
2.7945 | 18.0 | 334800 | 3.4283 | 0.4094 |
2.7744 | 19.0 | 353400 | 3.4362 | 0.4094 |
2.7567 | 20.0 | 372000 | 3.4372 | 0.4092 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1