metadata
tags:
- generated_from_trainer
datasets:
- kanishka/counterfactual-babylm-only_indef_articles_with_pl_nouns_removal
metrics:
- accuracy
model-index:
- name: >-
smolm-autoreg-bpe-counterfactual-babylm-only_indef_articles_with_pl_nouns_removal-seed_211-1e-3
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: >-
kanishka/counterfactual-babylm-only_indef_articles_with_pl_nouns_removal
type: >-
kanishka/counterfactual-babylm-only_indef_articles_with_pl_nouns_removal
metrics:
- name: Accuracy
type: accuracy
value: 0.412745149018544
smolm-autoreg-bpe-counterfactual-babylm-only_indef_articles_with_pl_nouns_removal-seed_211-1e-3
This model was trained from scratch on the kanishka/counterfactual-babylm-only_indef_articles_with_pl_nouns_removal dataset. It achieves the following results on the evaluation set:
- Loss: 3.3862
- Accuracy: 0.4127
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 211
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.5992 | 1.0 | 18600 | 3.8124 | 0.3592 |
3.3826 | 2.0 | 37200 | 3.5570 | 0.3817 |
3.255 | 3.0 | 55800 | 3.4820 | 0.3917 |
3.1751 | 4.0 | 74400 | 3.4194 | 0.3988 |
3.1181 | 5.0 | 93000 | 3.3839 | 0.4022 |
3.074 | 6.0 | 111600 | 3.3598 | 0.4055 |
3.0387 | 7.0 | 130200 | 3.3320 | 0.4090 |
3.0113 | 8.0 | 148800 | 3.3243 | 0.4117 |
2.9786 | 9.0 | 167400 | 3.3343 | 0.4103 |
2.9522 | 10.0 | 186000 | 3.3475 | 0.4107 |
2.9315 | 11.0 | 204600 | 3.3211 | 0.4132 |
2.9096 | 12.0 | 223200 | 3.3419 | 0.4125 |
2.8879 | 13.0 | 241800 | 3.3351 | 0.4137 |
2.8675 | 14.0 | 260400 | 3.3329 | 0.4132 |
2.8497 | 15.0 | 279000 | 3.3544 | 0.4124 |
2.8277 | 16.0 | 297600 | 3.3686 | 0.4117 |
2.8093 | 17.0 | 316200 | 3.3650 | 0.4130 |
2.7915 | 18.0 | 334800 | 3.3731 | 0.4126 |
2.7731 | 19.0 | 353400 | 3.3832 | 0.4128 |
2.7504 | 20.0 | 372000 | 3.3862 | 0.4127 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1