kanishka's picture
End of training
9c05b7c verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - kanishka/babylm2-rewritten-clean-spacy
metrics:
  - accuracy
model-index:
  - name: opt-babylm2-rewritten-clean-spacy-32k-earlystop-40epochs_seed-42_1e-3
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: kanishka/babylm2-rewritten-clean-spacy
          type: kanishka/babylm2-rewritten-clean-spacy
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.42334742212654364

opt-babylm2-rewritten-clean-spacy-32k-earlystop-40epochs_seed-42_1e-3

This model was trained from scratch on the kanishka/babylm2-rewritten-clean-spacy dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9600
  • Accuracy: 0.4233

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 40.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.9216 0.9996 1931 4.0134 0.3253
3.7977 1.9997 3863 3.5448 0.3639
3.3887 2.9999 5795 3.3242 0.3841
3.1805 4.0 7727 3.2082 0.3949
3.0632 4.9996 9658 3.1432 0.4012
2.9865 5.9997 11590 3.1010 0.4056
2.9347 6.9999 13522 3.0715 0.4087
2.8953 8.0 15454 3.0539 0.4108
2.8689 8.9996 17385 3.0392 0.4122
2.8456 9.9997 19317 3.0310 0.4134
2.8298 10.9999 21249 3.0251 0.4144
2.817 12.0 23181 3.0175 0.4152
2.8069 12.9996 25112 3.0119 0.4158
2.7996 13.9997 27044 3.0060 0.4163
2.7615 14.9999 28976 3.0038 0.4171
2.7575 16.0 30908 3.0022 0.4169
2.7573 16.9996 32839 2.9962 0.4179
2.7451 17.9997 34771 2.9867 0.4189
2.7275 18.9999 36703 2.9804 0.4201
2.7099 20.0 38635 2.9760 0.4208
2.693 20.9996 40566 2.9683 0.4216
2.6785 21.9997 42498 2.9666 0.4221
2.6628 22.9999 44430 2.9646 0.4227
2.6501 24.0 46362 2.9626 0.4228
2.6343 24.9996 48293 2.9600 0.4233
2.6198 25.9997 50225 2.9638 0.4236
2.604 26.9999 52157 2.9604 0.4240
2.5876 28.0 54089 2.9601 0.4245

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0