metadata
language:
- en
library_name: flair
pipeline_tag: token-classification
English NER model for extraction of named entities from scientific acknowledgement texts using Flair Embeddings
F1-Score: 0.79
Predicts 6 tags:
label | description | precision | recall | f1-score | support |
---|---|---|---|---|---|
GRNB | grant number | 0,93 | 0,98 | 0,96 | 160 |
IND | person | 0,98 | 0,98 | 0,98 | 295 |
FUND | funding organization | 0,70 | 0,83 | 0,76 | 157 |
UNI | university | 0,77 | 0,74 | 0,75 | 99 |
MISC | miscellaneous | 0,65 | 0,65 | 0,65 | 82 |
COR | corporation | 0,75 | 0,50 | 0,60 | 12 |
Based on Flair embeddings
Usage
Citation
if you use this model, please consider citing this work:
@misc{smirnova2023embedding,
title={Embedding Models for Supervised Automatic Extraction and Classification of Named Entities in Scientific Acknowledgements},
author={Nina Smirnova and Philipp Mayr},
year={2023},
eprint={2307.13377},
archivePrefix={arXiv},
primaryClass={cs.DL}
}