kaanyvvz's picture
Model save
8358f9c verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/dinov2-base
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: ky-finetuned-skindiseasefinal
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9552567237163814

ky-finetuned-skindiseasefinal

This model is a fine-tuned version of facebook/dinov2-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1301
  • Accuracy: 0.9553

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4949 0.9974 287 0.6912 0.7770
0.7268 1.9974 574 0.3927 0.8775
0.5179 2.9974 861 0.3185 0.8983
0.4193 3.9974 1148 0.2439 0.9191
0.3576 4.9974 1435 0.2107 0.9301
0.3015 5.9974 1722 0.1821 0.9386
0.2648 6.9974 2009 0.1685 0.9411
0.2228 7.9974 2296 0.1497 0.9487
0.1946 8.9974 2583 0.1407 0.9494
0.1625 9.9974 2870 0.1301 0.9553

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0