File size: 9,480 Bytes
1d79986 53afe1d 1d79986 571d741 0aa95a2 571d741 2bb76e3 571d741 2bb76e3 571d741 2bb76e3 571d741 2bb76e3 571d741 2bb76e3 571d741 2bb76e3 571d741 2bb76e3 571d741 2bb76e3 571d741 2bb76e3 571d741 2bb76e3 571d741 2bb76e3 571d741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# SafeTensorsファイルからブロックを切り出す
# Chop blocks from a SafeTensors file.
import argparse
import logging
import re
from collections import defaultdict
from pathlib import Path
import numpy
from safetensors.numpy import safe_open, save_file
logger = logging.getLogger(__name__)
def analyze_lora_layers(
sft_fd: safe_open,
) -> tuple[list[tuple[tuple[str, int], set[str]]], set[str]]:
"""
Analyze the LoRA layers in a SafeTensors file.
Args:
sft_fd (safe_open): An open SafeTensors file.
Returns:
A tuple containing:
- A list of tuples, each containing a (section, index) pair and a set of associated keys.
- A set of pass-through keys (non-LoRA layers).
"""
RE_LORA_NAME = re.compile(
r"lora_unet_((?:input|middle|output|down|mid|up)_blocks?)(?:(?:_(\d+))?_attentions)?_(\d+)_.*"
)
pass_through_keys: set[str] = set()
block2keys: dict[tuple[str, int], set[str]] = defaultdict(set)
for k in sft_fd.keys():
m = RE_LORA_NAME.fullmatch(k.replace("_0_1_transformer_blocks_", "_0_"))
if not m:
pass_through_keys.add(k)
continue
section, idx1, idx2 = m.groups()
if idx1 is None:
idx = idx2
else:
idx = f"{idx1}{idx2}"
block2keys[(section, idx)].add(k)
if not block2keys:
raise ValueError(
"No UNet layers found in the LoRA checkpoint (Maybe not a SDXL model?)"
)
block2keys_sorted = sorted((k, sorted(v)) for k, v in block2keys.items())
for k in pass_through_keys:
if not "te_" in k and "text_" not in k:
logging.warning(
f"key {k} removed but it doesn't look like a text encoder layer"
)
def print_layers(layers):
for layer, params in layers.items():
params = ", ".join(sorted(params))
dbg(f" - {layer:<70}: {params}")
if logger.getEffectiveLevel() <= logging.DEBUG:
dbg = logger.debug
for (section, idx), keys in block2keys_sorted:
layers = groupby_layer(keys)
dbg(f"* {section=} {idx=} keys={len(keys)} layers={len(layers)}")
print_layers(layers)
logger.debug(f" * Pass through: ")
print_layers(groupby_layer(pass_through_keys))
return block2keys_sorted, pass_through_keys
def groupby_layer(
keys, make_empty=set, update=lambda vs, layer_name, param_name: vs.add(param_name)
):
d = defaultdict(make_empty)
for k in keys:
layer, _, param = k.rpartition(".")
vs = d[layer]
update(vs, layer, param)
return d
def print_block_layout(
block2keys: list[tuple[tuple[str, int], set[str]]],
weights: list[float] | None = None,
) -> None:
"""
Print the layout of LoRA blocks, optionally with weights.
Args:
block2keys: A list of tuples, each containing a (section, index) pair and a set of associated keys.
weights: Optional list of weights corresponding to each block.
"""
logger.info("Blocks layout:")
if weights is None:
for i, ((section, idx), keys) in enumerate(block2keys):
logger.info(f"\t[{i:>2d}] {section:>13}.{idx} layers={len(keys):<3}")
section2shortname = {
# SDXL names:
"input_blocks": "INP",
"middle_block": "MID",
"output_blocks": "OUT",
# SD1 names
"down_blocks": "INP",
"mid_block": "MID",
"up_blocks": "OUT",
}
vector_string = ",".join(
f"{section2shortname[section]}{idx:>02}" for (section, idx), _ in block2keys
)
logger.info(f'Vector string format: "1,{vector_string}"')
vector_string = ",".join("0" * len(block2keys))
logger.info(f'Example (drops all blocks): "1,{vector_string}"')
else:
for i, (((section, idx), keys), weight) in enumerate(zip(block2keys, weights)):
if abs(weight) > 1e-6:
if abs(weight - 1) < 1e-6:
weight = 1
w_disp = f"weight={weight}"
else:
w_disp = "removed"
layers = len(
groupby_layer(keys, lambda: None, lambda _layers, _layer, _attr: None)
)
logger.info(
f"\t[{i:>2d}] {section:>13}.{idx} keys={len(keys):<3} layers={layers:<3} {w_disp}"
)
def filter_blocks(sft_fd: safe_open, vector_string: str) -> dict[str, "numpy.ndarray"]:
"""
Filter LoRA blocks based on a vector string.
Args:
sft_fd (safe_open): An open SafeTensors file.
vector_string (str): A string representing weights for each block.
Returns:
A dictionary containing the filtered state dict, or None if an error occurs.
"""
global_weight, *weights_vector = map(float, vector_string.split(","))
block2keys, pass_through_keys = analyze_lora_layers(sft_fd)
if len(weights_vector) != len(block2keys):
logger.error(f"expected {len(block2keys)} weights, got {len(weights_vector)}")
print_block_layout(block2keys)
return None
if logger.getEffectiveLevel() >= logging.INFO:
print_block_layout(block2keys, weights_vector)
state_dict = {}
for weight, ((s, idx), keys) in zip(weights_vector, block2keys):
weight *= global_weight
if abs(weight) < 1e-6:
logger.debug("reject %s:%s (%s)", s, idx, keys[0])
continue
for layer, params in groupby_layer(keys).items():
logger.debug(
"accept %s:%s (%s) weight=%.2f params=%s",
s,
idx,
layer,
weight,
",".join(params),
)
if "alpha" in params:
params.remove("alpha")
key = f"{layer}.alpha"
state_dict[key] = sft_fd.get_tensor(key) * weight
# if 'dora_scale' in params:
# params.remove("dora_scale")
# key = f"{layer}.dora_scale"
# tensor = sft_fd.get_tensor(key)
# if abs(weight - 1.0) > 1e-6:
# tensor -= 1.0
# tensor *= weight
# tensor += 1.0
# state_dict[key] = tensor
for param in params:
key = f"{layer}.{param}"
state_dict[key] = sft_fd.get_tensor(key)
else:
logging.warning("no alpha parameter in layer %s: %r", layer, params)
for param in params:
key = f"{layer}.{param}"
state_dict[key] = sft_fd.get_tensor(key)
logger.info(
"Keeping %d keys from the UNet, %d passing through (text encoders)",
len(state_dict),
len(pass_through_keys),
)
for k in pass_through_keys:
state_dict[k] = sft_fd.get_tensor(k)
return state_dict
def setup_logging(verbosity: int) -> None:
"""
Set up logging based on verbosity level and quiet flag.
Args:
verbosity (int): The verbosity level (0-2).
quiet (bool): If True, suppress all output except errors.
"""
log_levels = [logging.WARNING, logging.INFO, logging.DEBUG]
log_level = log_levels[max(0, min(verbosity, 2))]
logging.basicConfig(level=log_level, format="%(levelname)s: %(message)s")
def main() -> None:
"""
Main function to handle CLI arguments and execute the appropriate actions.
"""
parser = argparse.ArgumentParser(
description="Analyze and filter LoRA layers in SafeTensors files."
)
parser.add_argument("input_file", type=Path, help="Input SafeTensors file")
parser.add_argument(
"vector_string", nargs="?", help="Vector string for filtering blocks"
)
parser.add_argument("-o", "--output", type=Path, help="Output file path")
parser.add_argument(
"-v",
"--verbose",
action="count",
default=1,
help="Increase verbosity (can be repeated)",
)
parser.add_argument(
"-q",
"--quiet",
action="count",
default=0,
help="Suppress all output except errors",
)
args = parser.parse_args()
setup_logging(args.verbose - args.quiet)
with safe_open(args.input_file, framework="np") as sft_fd:
if args.vector_string:
# Filter blocks and save the result
filtered_state_dict = filter_blocks(sft_fd, args.vector_string)
if filtered_state_dict is None:
logging.error("No lyaers in output!")
exit(1)
# Determine output path
output_path = args.output or args.input_file.with_stem(
f"{args.input_file.stem}-chop"
)
metadata = sft_fd.metadata()
metadata["block_vector_string"] = args.vector_string
save_file(filtered_state_dict, output_path, metadata=metadata)
logging.info(f"Filtered LoRA saved to {output_path}")
else:
# Analyze LoRA layers
block2keys, pass_through_keys = analyze_lora_layers(sft_fd)
print_block_layout(block2keys)
logging.info(f"Pass through layers: {len(pass_through_keys)}")
if __name__ == "__main__":
main()
|