File size: 15,440 Bytes
1e712af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import numpy as np
import random
import torch

from tqdm import tqdm
from transformers import AutoTokenizer
from utils.classifier_model import SchemaItemClassifier
from transformers.trainer_utils import set_seed

def prepare_inputs_and_labels(sample, tokenizer):
    table_names = [table["table_name"] for table in sample["schema"]["schema_items"]]
    column_names = [table["column_names"] for table in sample["schema"]["schema_items"]]
    column_num_in_each_table = [len(table["column_names"]) for table in sample["schema"]["schema_items"]]

    # `column_name_word_indices` and `table_name_word_indices` record the word indices of each column and table in `input_words`, whose element is an integer
    column_name_word_indices, table_name_word_indices = [], []
    
    input_words = [sample["text"]]
    for table_id, table_name in enumerate(table_names):
        input_words.append("|")
        input_words.append(table_name)
        table_name_word_indices.append(len(input_words) - 1)
        input_words.append(":")
        
        for column_name in column_names[table_id]:
            input_words.append(column_name)
            column_name_word_indices.append(len(input_words) - 1)
            input_words.append(",")
        
        # remove the last ","
        input_words = input_words[:-1]

    tokenized_inputs = tokenizer(
        input_words, 
        return_tensors="pt", 
        is_split_into_words = True,
        padding = "max_length",
        max_length = 512,
        truncation = True
    )

    # after tokenizing, one table name or column name may be splitted into multiple tokens (i.e., sub-words)
    # `column_name_token_indices` and `table_name_token_indices` records the token indices of each column and table in `input_ids`, whose element is a list of integer
    column_name_token_indices, table_name_token_indices = [], []
    word_indices = tokenized_inputs.word_ids(batch_index = 0)

    # obtain token indices of each column in `input_ids`
    for column_name_word_index in column_name_word_indices:
        column_name_token_indices.append([token_id for token_id, word_index in enumerate(word_indices) if column_name_word_index == word_index])

    # obtain token indices of each table in `input_ids`
    for table_name_word_index in table_name_word_indices:
        table_name_token_indices.append([token_id for token_id, word_index in enumerate(word_indices) if table_name_word_index == word_index])

    encoder_input_ids = tokenized_inputs["input_ids"]
    encoder_input_attention_mask = tokenized_inputs["attention_mask"]

    # print("\n".join(tokenizer.batch_decode(encoder_input_ids, skip_special_tokens = True)))

    if torch.cuda.is_available():
        encoder_input_ids = encoder_input_ids.cuda()
        encoder_input_attention_mask = encoder_input_attention_mask.cuda()

    return encoder_input_ids, encoder_input_attention_mask, \
        column_name_token_indices, table_name_token_indices, column_num_in_each_table

def get_schema(tables_and_columns):
    schema_items = []
    table_names = list(dict.fromkeys([t for t, c in tables_and_columns]))
    for table_name in table_names:
        schema_items.append(
            {
                "table_name": table_name,
                "column_names":  [c for t, c in tables_and_columns if t == table_name]
            }
        )
    
    return {"schema_items": schema_items}

def get_sequence_length(text, tables_and_columns, tokenizer):
    table_names = [t for t, c in tables_and_columns]
    # duplicate `table_names` while preserving order
    table_names = list(dict.fromkeys(table_names))
    
    column_names = []
    for table_name in table_names:
        column_names.append([c for t, c in tables_and_columns if t == table_name])
    
    input_words = [text]
    for table_id, table_name in enumerate(table_names):
        input_words.append("|")
        input_words.append(table_name)
        input_words.append(":")
        for column_name in column_names[table_id]:
            input_words.append(column_name)
            input_words.append(",")
        # remove the last ","
        input_words = input_words[:-1]

    tokenized_inputs = tokenizer(input_words, is_split_into_words = True)

    return len(tokenized_inputs["input_ids"])

# handle extremely long schema sequences
def split_sample(sample, tokenizer):
    text = sample["text"]

    table_names = []
    column_names = []
    for table in sample["schema"]["schema_items"]:
        table_names.append(table["table_name"] + " ( " + table["table_comment"] + " ) " \
            if table["table_comment"] != "" else table["table_name"])
        column_names.append([column_name + " ( " + column_comment + " ) " \
            if column_comment != "" else column_name \
                for column_name, column_comment in zip(table["column_names"], table["column_comments"])])

    splitted_samples = []
    recorded_tables_and_columns = []

    for table_idx, table_name in enumerate(table_names):
        for column_name in column_names[table_idx]:
            if get_sequence_length(text, recorded_tables_and_columns + [[table_name, column_name]], tokenizer) < 500:
                recorded_tables_and_columns.append([table_name, column_name])
            else:
                splitted_samples.append(
                    {
                        "text": text,
                        "schema": get_schema(recorded_tables_and_columns)
                    }
                )
                recorded_tables_and_columns = [[table_name, column_name]]
    
    splitted_samples.append(
        {
            "text": text,
            "schema": get_schema(recorded_tables_and_columns)
        }
    )

    return splitted_samples

def merge_pred_results(sample, pred_results):
    # table_names = [table["table_name"] for table in sample["schema"]["schema_items"]]
    # column_names = [table["column_names"] for table in sample["schema"]["schema_items"]]
    table_names = []
    column_names = []
    for table in sample["schema"]["schema_items"]:
        table_names.append(table["table_name"] + " ( " + table["table_comment"] + " ) " \
            if table["table_comment"] != "" else table["table_name"])
        column_names.append([column_name + " ( " + column_comment + " ) " \
            if column_comment != "" else column_name \
                for column_name, column_comment in zip(table["column_names"], table["column_comments"])])

    merged_results = []
    for table_id, table_name in enumerate(table_names):
        table_prob = 0
        column_probs = []
        for result_dict in pred_results:
            if table_name in result_dict:
                if table_prob < result_dict[table_name]["table_prob"]:
                    table_prob = result_dict[table_name]["table_prob"]
                column_probs += result_dict[table_name]["column_probs"]

        merged_results.append(
            {
                "table_name": table_name,
                "table_prob": table_prob,
                "column_names": column_names[table_id],
                "column_probs": column_probs
            }
        )
    
    return merged_results

def filter_func(dataset, dataset_type, sic, num_top_k_tables = 5, num_top_k_columns = 5):
    for data in tqdm(dataset, desc = "filtering schema items for the dataset"):
        filtered_schema = dict()
        filtered_schema["schema_items"] = []

        table_names = [table["table_name"] for table in data["schema"]["schema_items"]]
        table_comments = [table["table_comment"] for table in data["schema"]["schema_items"]]
        column_names = [table["column_names"] for table in data["schema"]["schema_items"]]
        column_comments = [table["column_comments"] for table in data["schema"]["schema_items"]]

        if dataset_type == "eval":
            # predict scores for each tables and columns
            pred_results = sic.predict(data)
            # remain top_k1 tables for each database and top_k2 columns for each remained table
            table_probs = [pred_result["table_prob"] for pred_result in pred_results]
            table_indices = np.argsort(-np.array(table_probs), kind="stable")[:num_top_k_tables].tolist()
        elif dataset_type == "train":
            table_indices = [table_idx for table_idx, table_label in enumerate(data["table_labels"]) if table_label == 1]
            if len(table_indices) < num_top_k_tables:
                unused_table_indices = [table_idx for table_idx, table_label in enumerate(data["table_labels"]) if table_label == 0]
                table_indices += random.sample(unused_table_indices, min(len(unused_table_indices), num_top_k_tables - len(table_indices)))
            random.shuffle(table_indices)

        for table_idx in table_indices:
            if dataset_type == "eval":
                column_probs = pred_results[table_idx]["column_probs"]
                column_indices = np.argsort(-np.array(column_probs), kind="stable")[:num_top_k_columns].tolist()
            elif dataset_type == "train":
                column_indices = [column_idx for column_idx, column_label in enumerate(data["column_labels"][table_idx]) if column_label == 1]
                if len(column_indices) < num_top_k_columns:
                    unused_column_indices = [column_idx for column_idx, column_label in enumerate(data["column_labels"][table_idx]) if column_label == 0]
                    column_indices += random.sample(unused_column_indices, min(len(unused_column_indices), num_top_k_columns - len(column_indices)))
                random.shuffle(column_indices)

            filtered_schema["schema_items"].append(
                {
                    "table_name": table_names[table_idx],
                    "table_comment": table_comments[table_idx],
                    "column_names": [column_names[table_idx][column_idx] for column_idx in column_indices],
                    "column_comments": [column_comments[table_idx][column_idx] for column_idx in column_indices]
                }
            )

        # replace the old schema with the filtered schema
        data["schema"] = filtered_schema

        if dataset_type == "train":
            del data["table_labels"]
            del data["column_labels"]
        
    return dataset

def lista_contains_listb(lista, listb):
    for b in listb:
        if b not in lista:
            return 0
    
    return 1

class SchemaItemClassifierInference():
    def __init__(self, model_save_path):
        set_seed(42)
        # load tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(model_save_path, add_prefix_space = True)
        # initialize model
        self.model = SchemaItemClassifier(model_save_path, "test")
        # load fine-tuned params
        self.model.load_state_dict(torch.load(model_save_path + "/dense_classifier.pt", map_location=torch.device('cpu')), strict=False)
        if torch.cuda.is_available():
            self.model = self.model.cuda()
        self.model.eval()
    
    def predict_one(self, sample):
        encoder_input_ids, encoder_input_attention_mask, column_name_token_indices,\
            table_name_token_indices, column_num_in_each_table = prepare_inputs_and_labels(sample, self.tokenizer)

        with torch.no_grad():
            model_outputs = self.model(
                encoder_input_ids,
                encoder_input_attention_mask,
                [column_name_token_indices],
                [table_name_token_indices],
                [column_num_in_each_table]
            )

        table_logits = model_outputs["batch_table_name_cls_logits"][0]
        table_pred_probs = torch.nn.functional.softmax(table_logits, dim = 1)[:, 1].cpu().tolist()
            
        column_logits = model_outputs["batch_column_info_cls_logits"][0]
        column_pred_probs = torch.nn.functional.softmax(column_logits, dim = 1)[:, 1].cpu().tolist()

        splitted_column_pred_probs = []
        # split predicted column probs into each table
        for table_id, column_num in enumerate(column_num_in_each_table):
            splitted_column_pred_probs.append(column_pred_probs[sum(column_num_in_each_table[:table_id]): sum(column_num_in_each_table[:table_id]) + column_num])
        column_pred_probs = splitted_column_pred_probs

        result_dict = dict()
        for table_idx, table in enumerate(sample["schema"]["schema_items"]):
            result_dict[table["table_name"]] = {
                "table_name": table["table_name"],
                "table_prob": table_pred_probs[table_idx],
                "column_names": table["column_names"],
                "column_probs": column_pred_probs[table_idx],
            }

        return result_dict

    def predict(self, test_sample):
        splitted_samples = split_sample(test_sample, self.tokenizer)
        pred_results = []
        for splitted_sample in splitted_samples:
            pred_results.append(self.predict_one(splitted_sample))
        
        return merge_pred_results(test_sample, pred_results)
    
    def evaluate_coverage(self, dataset):
        max_k = 100
        total_num_for_table_coverage, total_num_for_column_coverage = 0, 0
        table_coverage_results = [0]*max_k
        column_coverage_results = [0]*max_k

        for data in dataset:
            indices_of_used_tables = [idx for idx, label in enumerate(data["table_labels"]) if label == 1]
            pred_results = sic.predict(data)
            # print(pred_results)
            table_probs = [res["table_prob"] for res in pred_results]
            for k in range(max_k):
                indices_of_top_k_tables = np.argsort(-np.array(table_probs), kind="stable")[:k+1].tolist()
                if lista_contains_listb(indices_of_top_k_tables, indices_of_used_tables):
                    table_coverage_results[k] += 1
            total_num_for_table_coverage += 1

            for table_idx in range(len(data["table_labels"])):
                indices_of_used_columns = [idx for idx, label in enumerate(data["column_labels"][table_idx]) if label == 1]
                if len(indices_of_used_columns) == 0:
                    continue
                column_probs = pred_results[table_idx]["column_probs"]
                for k in range(max_k):
                    indices_of_top_k_columns = np.argsort(-np.array(column_probs), kind="stable")[:k+1].tolist()
                    if lista_contains_listb(indices_of_top_k_columns, indices_of_used_columns):
                        column_coverage_results[k] += 1

                total_num_for_column_coverage += 1

                indices_of_top_10_columns = np.argsort(-np.array(column_probs), kind="stable")[:10].tolist()
                if lista_contains_listb(indices_of_top_10_columns, indices_of_used_columns) == 0:
                    print(pred_results[table_idx])
                    print(data["column_labels"][table_idx])
                    print(data["question"])

        print(total_num_for_table_coverage)
        print(table_coverage_results)
        print(total_num_for_column_coverage)
        print(column_coverage_results)
    
if __name__ == "__main__":
    dataset_name = "bird_with_evidence"
    # dataset_name = "bird"
    # dataset_name = "spider"
    sic = SchemaItemClassifierInference("sic_ckpts/sic_{}".format(dataset_name))
    import json
    dataset = json.load(open("./data/sft_eval_{}_text2sql.json".format(dataset_name)))
    
    sic.evaluate_coverage(dataset)