File size: 12,921 Bytes
bf4dd33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
#!/usr/bin/env python3
"""BirdNET Real-Time Audio Classification Script
This script captures audio from the microphone and uses the BirdNET ONNX model
to predict bird species in real-time with continuous display updates.
Created using Copilot.
"""
from __future__ import annotations
import numpy as np
import sounddevice as sd
import onnxruntime as ort
import argparse
import os
import time
import threading
from collections import deque
from datetime import datetime
import queue
class RealTimeBirdDetector:
"""Real-time bird detection using microphone input."""
def __init__(
self,
model_path: str = "model.onnx",
labels_path: str = "BirdNET_GLOBAL_6K_V2.4_Labels.txt",
sample_rate: int = 48000,
window_duration: float = 3.0,
confidence_threshold: float = 0.1,
top_k: int = 5,
update_interval: float = 1.0,
):
"""
Initialize the real-time bird detector.
Args:
model_path: Path to the ONNX model file
labels_path: Path to the species labels file
sample_rate: Audio sample rate (48kHz for BirdNET)
window_duration: Duration of each analysis window in seconds
confidence_threshold: Minimum confidence for detections
top_k: Number of top predictions to display
update_interval: How often to update predictions (seconds)
"""
self.model_path = model_path
self.labels_path = labels_path
self.sample_rate = sample_rate
self.window_duration = window_duration
self.window_size = int(sample_rate * window_duration)
self.confidence_threshold = confidence_threshold
self.top_k = top_k
self.update_interval = update_interval
# Audio buffer for continuous recording
self.audio_buffer = deque(maxlen=self.window_size * 2) # 6 seconds buffer
self.audio_queue = queue.Queue()
# Detection results
self.current_detections = []
self.detection_history = deque(maxlen=100) # Keep last 100 detections
self.running = False
# Load model and labels
self._load_model()
self._load_labels()
def _load_model(self) -> None:
"""Load the ONNX model."""
try:
print(f"Loading ONNX model: {self.model_path}")
self.session = ort.InferenceSession(self.model_path)
# Get model info
input_info = self.session.get_inputs()[0]
output_info = self.session.get_outputs()[0]
print(f"Model input: {input_info.name}, shape: {input_info.shape}")
print(f"Model output: {output_info.name}, shape: {output_info.shape}")
except Exception as e:
raise RuntimeError(f"Error loading ONNX model {self.model_path}: {str(e)}")
def _load_labels(self) -> None:
"""Load species labels from file."""
try:
print(f"Loading labels from: {self.labels_path}")
self.labels = []
with open(self.labels_path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if line:
# Format: "Scientific_name_Common Name"
if "_" in line:
common_name = line.split("_", 1)[1]
self.labels.append(common_name)
else:
self.labels.append(line)
print(f"Loaded {len(self.labels)} species labels")
except Exception as e:
raise RuntimeError(
f"Error loading labels file {self.labels_path}: {str(e)}"
)
def _audio_callback(
self, indata: np.ndarray, frames: int, time_info, status
) -> None:
"""Callback function for audio input."""
if status:
print(f"Audio status: {status}")
# Convert stereo to mono if needed
if len(indata.shape) > 1:
audio_data = np.mean(indata, axis=1)
else:
audio_data = indata.flatten()
# Add to queue for processing
self.audio_queue.put(audio_data.copy())
def _process_audio_buffer(self) -> None:
"""Process audio data from the queue."""
while self.running:
try:
# Get audio data from queue (with timeout)
audio_chunk = self.audio_queue.get(timeout=0.1)
# Add to rolling buffer
self.audio_buffer.extend(audio_chunk)
# Process if we have enough data
if len(self.audio_buffer) >= self.window_size:
# Get the most recent window
window_data = np.array(list(self.audio_buffer)[-self.window_size :])
# Run inference
self._analyze_audio_window(window_data)
except queue.Empty:
continue
except Exception as e:
print(f"Error processing audio: {e}")
def _analyze_audio_window(self, audio_data: np.ndarray) -> None:
"""Analyze a single audio window."""
try:
# Ensure correct format
audio_data = audio_data.astype(np.float32)
# Add batch dimension
input_data = np.expand_dims(audio_data, axis=0)
# Get input name from the model
input_name = self.session.get_inputs()[0].name
# Run inference
outputs = self.session.run(None, {input_name: input_data})
predictions = outputs[0]
# Get scores for this window
predictions = np.array(predictions)
if len(predictions.shape) > 1:
scores = predictions[0]
else:
scores = predictions
# Find detections above threshold
above_threshold = np.where(scores > self.confidence_threshold)[0]
# Create detection results
detections = []
for idx in above_threshold:
confidence = float(scores[idx])
species_name = (
self.labels[idx] if idx < len(self.labels) else f"Class {idx}"
)
detections.append(
{
"species": species_name,
"confidence": confidence,
"timestamp": datetime.now(),
}
)
# Sort by confidence
detections.sort(key=lambda x: x["confidence"], reverse=True)
# Update current detections
self.current_detections = detections[: self.top_k]
# Add to history
if detections:
self.detection_history.extend(detections[: self.top_k])
except Exception as e:
print(f"Error during inference: {e}")
def _display_results(self) -> None:
"""Continuously display detection results."""
while self.running:
try:
# Clear screen (works on most terminals)
os.system("clear" if os.name == "posix" else "cls")
# Display header
print("π€ BirdNET Real-Time Detection")
print("=" * 50)
print(f"Listening... (Confidence > {self.confidence_threshold:.2f})")
print(f"Time: {datetime.now().strftime('%H:%M:%S')}")
print()
# Display current detections
if self.current_detections:
print(
f"π¦ Current Detections (Top {len(self.current_detections)}):"
)
print("-" * 40)
for i, detection in enumerate(self.current_detections, 1):
confidence = detection["confidence"]
species = detection["species"]
# Add confidence bars
bar_length = int(confidence * 20) # Scale to 20 chars
bar = "β" * bar_length + "β" * (20 - bar_length)
print(f"{i:2d}. {species}")
print(f" {bar} {confidence:.4f}")
else:
print("π No detections above threshold...")
print()
# Display recent activity
if self.detection_history:
print("π Recent Activity (Last 10):")
print("-" * 40)
recent = list(self.detection_history)[-10:]
for detection in reversed(recent):
timestamp = detection["timestamp"].strftime("%H:%M:%S")
species = detection["species"]
confidence = detection["confidence"]
print(f"{timestamp} - {species} ({confidence:.3f})")
print()
print("Press Ctrl+C to stop")
# Wait before next update
time.sleep(self.update_interval)
except KeyboardInterrupt:
break
except Exception as e:
print(f"Display error: {e}")
def start_detection(self) -> None:
"""Start real-time detection."""
try:
print("Starting real-time bird detection...")
print(f"Sample rate: {self.sample_rate} Hz")
print(f"Window size: {self.window_duration} seconds")
print(f"Confidence threshold: {self.confidence_threshold}")
print("Press Ctrl+C to stop\n")
self.running = True
# Start audio processing thread
audio_thread = threading.Thread(
target=self._process_audio_buffer, daemon=True
)
audio_thread.start()
# Start display thread
display_thread = threading.Thread(target=self._display_results, daemon=True)
display_thread.start()
# Start audio input stream
with sd.InputStream(
callback=self._audio_callback,
channels=1,
samplerate=self.sample_rate,
blocksize=int(self.sample_rate * 0.1), # 100ms blocks
dtype=np.float32,
):
print("π€ Microphone active - listening for birds...")
# Keep main thread alive
try:
while self.running:
time.sleep(0.1)
except KeyboardInterrupt:
pass
except Exception as e:
print(f"Error during detection: {e}")
finally:
self.running = False
print("\nπ Detection stopped.")
def stop_detection(self) -> None:
"""Stop detection."""
self.running = False
def main() -> int:
"""Main function for real-time detection."""
parser = argparse.ArgumentParser(
description="BirdNET Real-Time Audio Classification"
)
parser.add_argument(
"--model", default="model.onnx", help="Path to the ONNX model file"
)
parser.add_argument(
"--labels",
default="BirdNET_GLOBAL_6K_V2.4_Labels.txt",
help="Path to the labels file",
)
parser.add_argument(
"--confidence",
type=float,
default=0.1,
help="Minimum confidence threshold for detections (default: 0.1)",
)
parser.add_argument(
"--top-k",
type=int,
default=5,
help="Number of top predictions to show (default: 5)",
)
parser.add_argument(
"--update-interval",
type=float,
default=1.0,
help="Display update interval in seconds (default: 1.0)",
)
parser.add_argument(
"--list-devices", action="store_true", help="List available audio input devices"
)
args = parser.parse_args()
# List audio devices if requested
if args.list_devices:
print("Available audio input devices:")
print(sd.query_devices())
return 0
# Check if files exist
if not os.path.exists(args.model):
print(f"Error: Model file '{args.model}' not found.")
return 1
if not os.path.exists(args.labels):
print(f"Error: Labels file '{args.labels}' not found.")
return 1
try:
# Create detector
detector = RealTimeBirdDetector(
model_path=args.model,
labels_path=args.labels,
confidence_threshold=args.confidence,
top_k=args.top_k,
update_interval=args.update_interval,
)
# Start detection
detector.start_detection()
return 0
except Exception as e:
print(f"Error: {str(e)}")
return 1
if __name__ == "__main__":
exit(main())
|