juro95's picture
Training in progress epoch 1
1c1b39c
|
raw
history blame
1.55 kB
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: juro95/xlm-roberta-finetuned-ner-5-with-skills
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# juro95/xlm-roberta-finetuned-ner-5-with-skills
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1626
- Validation Loss: 0.1459
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 65502, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.3044 | 0.1808 | 0 |
| 0.1626 | 0.1459 | 1 |
### Framework versions
- Transformers 4.25.1
- TensorFlow 2.6.5
- Datasets 2.3.2
- Tokenizers 0.13.2