File size: 86,576 Bytes
623808a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 |
ggml_init_cublas: found 1 CUDA devices:
Device 0: NVIDIA A10G, compute capability 8.6
llama_model_loader: loaded meta data with 16 key-value pairs and 291 tensors from llama-2-7b-chat-q5_k_m.gguf (version GGUF V2 (latest))
llama_model_loader: - tensor 0: token_embd.weight q5_K [ 4096, 32000, 1, 1 ]
llama_model_loader: - tensor 1: output_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 2: output.weight q6_K [ 4096, 32000, 1, 1 ]
llama_model_loader: - tensor 3: blk.0.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 4: blk.0.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 5: blk.0.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 6: blk.0.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 7: blk.0.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 8: blk.0.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 9: blk.0.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 10: blk.0.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 11: blk.0.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 12: blk.1.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 13: blk.1.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 14: blk.1.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 15: blk.1.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 16: blk.1.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 17: blk.1.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 18: blk.1.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 19: blk.1.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 20: blk.1.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 21: blk.2.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 22: blk.2.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 23: blk.2.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 24: blk.2.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 25: blk.2.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 26: blk.2.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 27: blk.2.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 28: blk.2.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 29: blk.2.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 30: blk.3.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 31: blk.3.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 32: blk.3.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 33: blk.3.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 34: blk.3.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 35: blk.3.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 36: blk.3.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 37: blk.3.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 38: blk.3.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 39: blk.4.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 40: blk.4.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 41: blk.4.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 42: blk.4.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 43: blk.4.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 44: blk.4.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 45: blk.4.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 46: blk.4.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 47: blk.4.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 48: blk.5.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 49: blk.5.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 50: blk.5.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 51: blk.5.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 52: blk.5.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 53: blk.5.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 54: blk.5.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 55: blk.5.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 56: blk.5.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 57: blk.6.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 58: blk.6.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 59: blk.6.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 60: blk.6.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 61: blk.6.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 62: blk.6.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 63: blk.6.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 64: blk.6.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 65: blk.6.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 66: blk.7.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 67: blk.7.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 68: blk.7.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 69: blk.7.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 70: blk.7.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 71: blk.7.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 72: blk.7.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 73: blk.7.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 74: blk.7.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 75: blk.8.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 76: blk.8.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 77: blk.8.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 78: blk.8.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 79: blk.8.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 80: blk.8.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 81: blk.8.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 82: blk.8.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 83: blk.8.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 84: blk.9.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 85: blk.9.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 86: blk.9.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 87: blk.9.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 88: blk.9.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 89: blk.9.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 90: blk.9.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 91: blk.9.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 92: blk.9.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 93: blk.10.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 94: blk.10.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 95: blk.10.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 96: blk.10.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 97: blk.10.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 98: blk.10.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 99: blk.10.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 100: blk.10.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 101: blk.10.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 102: blk.11.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 103: blk.11.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 104: blk.11.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 105: blk.11.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 106: blk.11.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 107: blk.11.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 108: blk.11.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 109: blk.11.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 110: blk.11.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 111: blk.12.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 112: blk.12.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 113: blk.12.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 114: blk.12.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 115: blk.12.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 116: blk.12.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 117: blk.12.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 118: blk.12.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 119: blk.12.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 120: blk.13.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 121: blk.13.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 122: blk.13.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 123: blk.13.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 124: blk.13.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 125: blk.13.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 126: blk.13.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 127: blk.13.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 128: blk.13.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 129: blk.14.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 130: blk.14.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 131: blk.14.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 132: blk.14.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 133: blk.14.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 134: blk.14.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 135: blk.14.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 136: blk.14.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 137: blk.14.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 138: blk.15.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 139: blk.15.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 140: blk.15.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 141: blk.15.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 142: blk.15.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 143: blk.15.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 144: blk.15.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 145: blk.15.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 146: blk.15.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 147: blk.16.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 148: blk.16.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 149: blk.16.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 150: blk.16.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 151: blk.16.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 152: blk.16.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 153: blk.16.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 154: blk.16.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 155: blk.16.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 156: blk.17.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 157: blk.17.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 158: blk.17.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 159: blk.17.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 160: blk.17.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 161: blk.17.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 162: blk.17.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 163: blk.17.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 164: blk.17.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 165: blk.18.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 166: blk.18.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 167: blk.18.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 168: blk.18.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 169: blk.18.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 170: blk.18.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 171: blk.18.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 172: blk.18.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 173: blk.18.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 174: blk.19.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 175: blk.19.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 176: blk.19.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 177: blk.19.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 178: blk.19.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 179: blk.19.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 180: blk.19.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 181: blk.19.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 182: blk.19.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 183: blk.20.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 184: blk.20.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 185: blk.20.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 186: blk.20.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 187: blk.20.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 188: blk.20.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 189: blk.20.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 190: blk.20.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 191: blk.20.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 192: blk.21.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 193: blk.21.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 194: blk.21.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 195: blk.21.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 196: blk.21.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 197: blk.21.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 198: blk.21.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 199: blk.21.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 200: blk.21.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 201: blk.22.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 202: blk.22.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 203: blk.22.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 204: blk.22.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 205: blk.22.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 206: blk.22.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 207: blk.22.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 208: blk.22.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 209: blk.22.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 210: blk.23.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 211: blk.23.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 212: blk.23.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 213: blk.23.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 214: blk.23.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 215: blk.23.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 216: blk.23.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 217: blk.23.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 218: blk.23.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 219: blk.24.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 220: blk.24.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 221: blk.24.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 222: blk.24.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 223: blk.24.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 224: blk.24.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 225: blk.24.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 226: blk.24.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 227: blk.24.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 228: blk.25.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 229: blk.25.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 230: blk.25.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 231: blk.25.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 232: blk.25.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 233: blk.25.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 234: blk.25.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 235: blk.25.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 236: blk.25.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 237: blk.26.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 238: blk.26.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 239: blk.26.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 240: blk.26.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 241: blk.26.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 242: blk.26.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 243: blk.26.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 244: blk.26.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 245: blk.26.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 246: blk.27.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 247: blk.27.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 248: blk.27.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 249: blk.27.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 250: blk.27.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 251: blk.27.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 252: blk.27.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 253: blk.27.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 254: blk.27.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 255: blk.28.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 256: blk.28.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 257: blk.28.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 258: blk.28.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 259: blk.28.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 260: blk.28.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 261: blk.28.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 262: blk.28.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 263: blk.28.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 264: blk.29.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 265: blk.29.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 266: blk.29.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 267: blk.29.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 268: blk.29.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 269: blk.29.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 270: blk.29.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 271: blk.29.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 272: blk.29.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 273: blk.30.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 274: blk.30.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 275: blk.30.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 276: blk.30.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 277: blk.30.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 278: blk.30.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 279: blk.30.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 280: blk.30.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 281: blk.30.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 282: blk.31.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 283: blk.31.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 284: blk.31.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 285: blk.31.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 286: blk.31.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 287: blk.31.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 288: blk.31.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 289: blk.31.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 290: blk.31.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - kv 0: general.architecture str
llama_model_loader: - kv 1: general.name str
llama_model_loader: - kv 2: llama.context_length u32
llama_model_loader: - kv 3: llama.embedding_length u32
llama_model_loader: - kv 4: llama.block_count u32
llama_model_loader: - kv 5: llama.feed_forward_length u32
llama_model_loader: - kv 6: llama.rope.dimension_count u32
llama_model_loader: - kv 7: llama.attention.head_count u32
llama_model_loader: - kv 8: llama.attention.head_count_kv u32
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32
llama_model_loader: - kv 10: general.file_type u32
llama_model_loader: - kv 11: tokenizer.ggml.model str
llama_model_loader: - kv 12: tokenizer.ggml.tokens arr
llama_model_loader: - kv 13: tokenizer.ggml.scores arr
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr
llama_model_loader: - kv 15: general.quantization_version u32
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type q5_K: 193 tensors
llama_model_loader: - type q6_K: 33 tensors
llm_load_print_meta: format = GGUF V2 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 4096
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff = 11008
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: model type = 7B
llm_load_print_meta: model ftype = mostly Q5_K - Medium
llm_load_print_meta: model params = 6.74 B
llm_load_print_meta: model size = 4.45 GiB (5.68 BPW)
llm_load_print_meta: general.name = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.10 MB
llm_load_tensors: using CUDA for GPU acceleration
llm_load_tensors: mem required = 4560.96 MB
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/35 layers to GPU
llm_load_tensors: VRAM used: 0.00 MB
..................................................................................................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: kv self size = 256.00 MB
llama_new_context_with_model: compute buffer total size = 76.63 MB
llama_new_context_with_model: VRAM scratch buffer: 70.50 MB
llama_new_context_with_model: total VRAM used: 70.50 MB (model: 0.00 MB, context: 70.50 MB)
main: seed: 1700014636
main: model base = 'llama-2-7b-chat-q5_k_m.gguf'
main: init model
print_params: n_vocab: 32000
print_params: n_ctx: 128
print_params: n_embd: 4096
print_params: n_ff: 11008
print_params: n_head: 32
print_params: n_head_kv: 32
print_params: n_layer: 32
print_params: norm_rms_eps : 0.000010
print_params: rope_freq_base : 10000.000000
print_params: rope_freq_scale : 1.000000
print_lora_params: n_rank_attention_norm : 1
print_lora_params: n_rank_wq : 4
print_lora_params: n_rank_wk : 4
print_lora_params: n_rank_wv : 4
print_lora_params: n_rank_wo : 4
print_lora_params: n_rank_ffn_norm : 1
print_lora_params: n_rank_w1 : 4
print_lora_params: n_rank_w2 : 4
print_lora_params: n_rank_w3 : 4
print_lora_params: n_rank_tok_embeddings : 4
print_lora_params: n_rank_norm : 1
print_lora_params: n_rank_output : 4
main: total train_iterations 0
main: seen train_samples 0
main: seen train_tokens 0
main: completed train_epochs 0
main: lora_size = 84807904 bytes (80.9 MB)
main: opt_size = 126592864 bytes (120.7 MB)
main: opt iter 0
main: input_size = 131076128 bytes (125.0 MB)
main: compute_size = 14064566880 bytes (13413.0 MB)
main: evaluation order = RIGHT_TO_LEFT
main: tokenize training data
tokenize_file: warning: found 7 samples (max length 222) that exceed context length of 128. samples will be cut off.
tokenize_file: warning: found 185 samples (min length 47) that are shorter than context length of 128.
tokenize_file: total number of samples: 192
main: number of training tokens: 12899
main: number of unique tokens: 963
main: train data seems to have changed. restarting shuffled epoch.
main: begin training
main: work_size = 1024512 bytes (1.0 MB)
train_opt_callback: iter= 0 sample=1/192 sched=0.000000 loss=0.000000 |->
train_opt_callback: iter= 1 sample=9/192 sched=0.010000 loss=6.896706 dt=00:33:27 eta=5d 22:10:22 |->
train_opt_callback: iter= 2 sample=17/192 sched=0.020000 loss=6.528623 dt=00:33:36 eta=5d 22:14:41 |----->
train_opt_callback: iter= 3 sample=25/192 sched=0.030000 loss=7.002708 dt=00:33:30 eta=5d 21:15:45 |>
train_opt_callback: iter= 4 sample=33/192 sched=0.040000 loss=6.527895 dt=00:33:36 eta=5d 21:08:35 |----->
train_opt_callback: iter= 5 sample=41/192 sched=0.050000 loss=5.247390 dt=00:33:36 eta=5d 20:36:45 |----------------->
train_opt_callback: iter= 6 sample=49/192 sched=0.060000 loss=5.971481 dt=00:33:37 eta=5d 20:05:20 |---------->
train_opt_callback: iter= 7 sample=57/192 sched=0.070000 loss=5.127095 dt=00:33:43 eta=5d 19:57:54 |------------------->
train_opt_callback: iter= 8 sample=65/192 sched=0.080000 loss=4.606475 dt=00:33:31 eta=5d 18:32:54 |------------------------>
train_opt_callback: iter= 9 sample=73/192 sched=0.090000 loss=4.218550 dt=00:33:36 eta=5d 18:21:27 |---------------------------->
save_checkpoint_lora_file: saving to checkpoint-10.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 10 sample=81/192 sched=0.100000 loss=4.159760 dt=00:33:36 eta=5d 17:45:45 |---------------------------->
train_opt_callback: iter= 11 sample=89/192 sched=0.110000 loss=3.662558 dt=00:33:33 eta=5d 17:03:45 |--------------------------------->
train_opt_callback: iter= 12 sample=97/192 sched=0.120000 loss=3.240861 dt=00:33:37 eta=5d 16:42:38 |-------------------------------------->
train_opt_callback: iter= 13 sample=105/192 sched=0.130000 loss=2.798615 dt=00:33:38 eta=5d 16:16:12 |------------------------------------------>
train_opt_callback: iter= 14 sample=113/192 sched=0.140000 loss=2.537306 dt=00:33:31 eta=5d 15:13:55 |--------------------------------------------->
train_opt_callback: iter= 15 sample=121/192 sched=0.150000 loss=2.133917 dt=00:33:37 eta=5d 15:03:38 |------------------------------------------------->
train_opt_callback: iter= 16 sample=129/192 sched=0.160000 loss=2.062928 dt=00:33:38 eta=5d 14:32:36 |------------------------------------------------->
train_opt_callback: iter= 17 sample=137/192 sched=0.170000 loss=1.867334 dt=00:33:40 eta=5d 14:09:46 |--------------------------------------------------->
train_opt_callback: iter= 18 sample=145/192 sched=0.180000 loss=1.751243 dt=00:33:44 eta=5d 13:50:56 |---------------------------------------------------->
train_opt_callback: iter= 19 sample=153/192 sched=0.190000 loss=1.845504 dt=00:33:39 eta=5d 12:58:13 |---------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-20.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 20 sample=161/192 sched=0.200000 loss=1.504754 dt=00:33:45 eta=5d 12:45:40 |------------------------------------------------------->
train_opt_callback: iter= 21 sample=169/192 sched=0.210000 loss=1.408401 dt=00:33:41 eta=5d 11:58:40 |-------------------------------------------------------->
train_opt_callback: iter= 22 sample=177/192 sched=0.220000 loss=1.236330 dt=00:33:34 eta=5d 10:54:53 |---------------------------------------------------------->
train_opt_callback: iter= 23 sample=185/192 sched=0.230000 loss=1.384089 dt=00:33:27 eta=5d 09:57:41 |-------------------------------------------------------->
train_opt_callback: reshuffle samples. completed epochs: 1
train_opt_callback: iter= 24 sample=1/192 sched=0.240000 loss=0.921234 dt=00:33:30 eta=5d 09:34:36 |------------------------------------------------------------->
train_opt_callback: iter= 25 sample=9/192 sched=0.250000 loss=0.896220 dt=00:33:32 eta=5d 09:08:42 |------------------------------------------------------------->
train_opt_callback: iter= 26 sample=17/192 sched=0.260000 loss=1.035781 dt=00:33:30 eta=5d 08:27:53 |------------------------------------------------------------>
train_opt_callback: iter= 27 sample=25/192 sched=0.270000 loss=0.825575 dt=00:33:35 eta=5d 08:12:54 |-------------------------------------------------------------->
train_opt_callback: iter= 28 sample=33/192 sched=0.280000 loss=0.563456 dt=00:33:45 eta=5d 08:18:26 |---------------------------------------------------------------->
train_opt_callback: iter= 29 sample=41/192 sched=0.290000 loss=0.375454 dt=00:33:42 eta=5d 07:32:46 |------------------------------------------------------------------>
save_checkpoint_lora_file: saving to checkpoint-30.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 30 sample=49/192 sched=0.300000 loss=0.350678 dt=00:33:40 eta=5d 06:51:11 |------------------------------------------------------------------>
train_opt_callback: iter= 31 sample=57/192 sched=0.310000 loss=0.310571 dt=00:33:36 eta=5d 06:02:22 |------------------------------------------------------------------->
train_opt_callback: iter= 32 sample=65/192 sched=0.320000 loss=0.404648 dt=00:33:30 eta=5d 05:07:29 |------------------------------------------------------------------>
train_opt_callback: iter= 33 sample=73/192 sched=0.330000 loss=0.441364 dt=00:33:30 eta=5d 04:33:49 |------------------------------------------------------------------>
train_opt_callback: iter= 34 sample=81/192 sched=0.340000 loss=0.592602 dt=00:33:22 eta=5d 03:30:54 |---------------------------------------------------------------->
train_opt_callback: iter= 35 sample=89/192 sched=0.350000 loss=0.393056 dt=00:33:31 eta=5d 03:30:48 |------------------------------------------------------------------>
train_opt_callback: iter= 36 sample=97/192 sched=0.360000 loss=0.386178 dt=00:33:32 eta=5d 02:58:00 |------------------------------------------------------------------>
train_opt_callback: iter= 37 sample=105/192 sched=0.370000 loss=0.435404 dt=00:33:30 eta=5d 02:17:20 |------------------------------------------------------------------>
train_opt_callback: iter= 38 sample=113/192 sched=0.380000 loss=0.390880 dt=00:33:38 eta=5d 02:12:36 |------------------------------------------------------------------>
train_opt_callback: iter= 39 sample=121/192 sched=0.390000 loss=0.262534 dt=00:33:33 eta=5d 01:22:05 |------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-40.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 40 sample=129/192 sched=0.400000 loss=0.316369 dt=00:33:33 eta=5d 00:47:05 |------------------------------------------------------------------->
train_opt_callback: iter= 41 sample=137/192 sched=0.410000 loss=0.325958 dt=00:33:31 eta=5d 00:09:31 |------------------------------------------------------------------->
train_opt_callback: iter= 42 sample=145/192 sched=0.420000 loss=0.301978 dt=00:33:29 eta=4d 23:25:36 |------------------------------------------------------------------->
train_opt_callback: iter= 43 sample=153/192 sched=0.430000 loss=0.200966 dt=00:33:18 eta=4d 22:13:21 |-------------------------------------------------------------------->
train_opt_callback: iter= 44 sample=161/192 sched=0.440000 loss=0.257932 dt=00:33:05 eta=4d 20:55:58 |------------------------------------------------------------------->
train_opt_callback: iter= 45 sample=169/192 sched=0.450000 loss=0.349884 dt=00:33:10 eta=4d 20:38:49 |------------------------------------------------------------------>
train_opt_callback: iter= 46 sample=177/192 sched=0.460000 loss=0.232009 dt=00:33:11 eta=4d 20:10:15 |-------------------------------------------------------------------->
train_opt_callback: iter= 47 sample=185/192 sched=0.470000 loss=0.351911 dt=00:33:03 eta=4d 19:08:45 |------------------------------------------------------------------>
train_opt_callback: reshuffle samples. completed epochs: 2
train_opt_callback: iter= 48 sample=1/192 sched=0.480000 loss=0.430637 dt=00:33:01 eta=4d 18:28:25 |------------------------------------------------------------------>
train_opt_callback: iter= 49 sample=9/192 sched=0.490000 loss=0.146809 dt=00:32:56 eta=4d 17:40:17 |-------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-50.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 50 sample=17/192 sched=0.500000 loss=0.184028 dt=00:32:55 eta=4d 17:03:13 |-------------------------------------------------------------------->
train_opt_callback: iter= 51 sample=25/192 sched=0.510000 loss=0.257756 dt=00:33:02 eta=4d 16:53:22 |------------------------------------------------------------------->
train_opt_callback: iter= 52 sample=33/192 sched=0.520000 loss=0.255507 dt=00:32:54 eta=4d 15:52:28 |------------------------------------------------------------------->
train_opt_callback: iter= 53 sample=41/192 sched=0.530000 loss=0.106297 dt=00:33:00 eta=4d 15:39:44 |--------------------------------------------------------------------->
train_opt_callback: iter= 54 sample=49/192 sched=0.540000 loss=0.109958 dt=00:33:09 eta=4d 15:39:23 |--------------------------------------------------------------------->
train_opt_callback: iter= 55 sample=57/192 sched=0.550000 loss=0.201428 dt=00:33:09 eta=4d 15:06:11 |-------------------------------------------------------------------->
train_opt_callback: iter= 56 sample=65/192 sched=0.560000 loss=0.243644 dt=00:32:58 eta=4d 13:54:14 |-------------------------------------------------------------------->
train_opt_callback: iter= 57 sample=73/192 sched=0.570000 loss=0.081309 dt=00:32:58 eta=4d 13:21:33 |--------------------------------------------------------------------->
train_opt_callback: iter= 58 sample=81/192 sched=0.580000 loss=0.096137 dt=00:32:55 eta=4d 12:38:31 |--------------------------------------------------------------------->
train_opt_callback: iter= 59 sample=89/192 sched=0.590000 loss=0.248359 dt=00:33:01 eta=4d 12:26:31 |------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-60.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 60 sample=97/192 sched=0.600000 loss=0.359471 dt=00:33:06 eta=4d 12:08:21 |------------------------------------------------------------------>
train_opt_callback: iter= 61 sample=105/192 sched=0.610000 loss=0.205663 dt=00:33:05 eta=4d 11:31:27 |-------------------------------------------------------------------->
train_opt_callback: iter= 62 sample=113/192 sched=0.620000 loss=0.208255 dt=00:33:12 eta=4d 11:21:58 |-------------------------------------------------------------------->
train_opt_callback: iter= 63 sample=121/192 sched=0.630000 loss=0.205131 dt=00:33:05 eta=4d 10:26:23 |-------------------------------------------------------------------->
train_opt_callback: iter= 64 sample=129/192 sched=0.640000 loss=0.190218 dt=00:33:16 eta=4d 10:28:43 |-------------------------------------------------------------------->
train_opt_callback: iter= 65 sample=137/192 sched=0.650000 loss=0.299253 dt=00:33:04 eta=4d 09:18:31 |------------------------------------------------------------------->
train_opt_callback: iter= 66 sample=145/192 sched=0.660000 loss=0.373301 dt=00:32:58 eta=4d 08:23:59 |------------------------------------------------------------------>
train_opt_callback: iter= 67 sample=153/192 sched=0.670000 loss=0.207523 dt=00:33:05 eta=4d 08:15:10 |-------------------------------------------------------------------->
train_opt_callback: iter= 68 sample=161/192 sched=0.680000 loss=0.296497 dt=00:32:54 eta=4d 07:06:44 |------------------------------------------------------------------->
train_opt_callback: iter= 69 sample=169/192 sched=0.690000 loss=0.145919 dt=00:32:59 eta=4d 06:50:53 |--------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-70.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 70 sample=177/192 sched=0.700000 loss=0.275909 dt=00:33:13 eta=4d 07:01:18 |------------------------------------------------------------------->
train_opt_callback: iter= 71 sample=185/192 sched=0.710000 loss=0.232179 dt=00:33:18 eta=4d 06:42:22 |-------------------------------------------------------------------->
train_opt_callback: reshuffle samples. completed epochs: 3
train_opt_callback: iter= 72 sample=1/192 sched=0.720000 loss=0.249719 dt=00:33:03 eta=4d 05:23:48 |------------------------------------------------------------------->
train_opt_callback: iter= 73 sample=9/192 sched=0.730000 loss=0.117920 dt=00:33:16 eta=4d 05:27:57 |--------------------------------------------------------------------->
train_opt_callback: iter= 74 sample=17/192 sched=0.740000 loss=0.114252 dt=00:33:10 eta=4d 04:39:02 |--------------------------------------------------------------------->
train_opt_callback: iter= 75 sample=25/192 sched=0.750000 loss=0.249378 dt=00:33:05 eta=4d 03:49:32 |------------------------------------------------------------------->
train_opt_callback: iter= 76 sample=33/192 sched=0.760000 loss=0.093397 dt=00:32:57 eta=4d 02:53:29 |--------------------------------------------------------------------->
train_opt_callback: iter= 77 sample=41/192 sched=0.770000 loss=0.193217 dt=00:32:57 eta=4d 02:19:39 |-------------------------------------------------------------------->
train_opt_callback: iter= 78 sample=49/192 sched=0.780000 loss=0.112519 dt=00:33:01 eta=4d 01:57:22 |--------------------------------------------------------------------->
train_opt_callback: iter= 79 sample=57/192 sched=0.790000 loss=0.132837 dt=00:33:01 eta=4d 01:25:15 |--------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-80.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 80 sample=65/192 sched=0.800000 loss=0.133788 dt=00:32:55 eta=4d 00:34:13 |--------------------------------------------------------------------->
train_opt_callback: iter= 81 sample=73/192 sched=0.810000 loss=0.228926 dt=00:32:52 eta=3d 23:52:02 |-------------------------------------------------------------------->
train_opt_callback: iter= 82 sample=81/192 sched=0.820000 loss=0.186090 dt=00:32:52 eta=3d 23:18:50 |-------------------------------------------------------------------->
train_opt_callback: iter= 83 sample=89/192 sched=0.830000 loss=0.127048 dt=00:32:55 eta=3d 22:55:51 |--------------------------------------------------------------------->
train_opt_callback: iter= 84 sample=97/192 sched=0.840000 loss=0.072938 dt=00:33:13 eta=3d 23:14:39 |--------------------------------------------------------------------->
train_opt_callback: iter= 85 sample=105/192 sched=0.850000 loss=0.103475 dt=00:33:19 eta=3d 22:57:52 |--------------------------------------------------------------------->
train_opt_callback: iter= 86 sample=113/192 sched=0.860000 loss=0.170867 dt=00:33:14 eta=3d 22:10:31 |-------------------------------------------------------------------->
train_opt_callback: iter= 87 sample=121/192 sched=0.870000 loss=0.195967 dt=00:33:10 eta=3d 21:26:40 |-------------------------------------------------------------------->
train_opt_callback: iter= 88 sample=129/192 sched=0.880000 loss=0.123484 dt=00:33:09 eta=3d 20:51:23 |--------------------------------------------------------------------->
train_opt_callback: iter= 89 sample=137/192 sched=0.890000 loss=0.119564 dt=00:33:12 eta=3d 20:25:45 |--------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-90.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 90 sample=145/192 sched=0.900000 loss=0.097791 dt=00:33:16 eta=3d 20:04:57 |--------------------------------------------------------------------->
train_opt_callback: iter= 91 sample=153/192 sched=0.910000 loss=0.217274 dt=00:33:17 eta=3d 19:32:48 |-------------------------------------------------------------------->
train_opt_callback: iter= 92 sample=161/192 sched=0.920000 loss=0.112811 dt=00:33:26 eta=3d 19:23:40 |--------------------------------------------------------------------->
train_opt_callback: iter= 93 sample=169/192 sched=0.930000 loss=0.110431 dt=00:33:20 eta=3d 18:33:30 |--------------------------------------------------------------------->
train_opt_callback: iter= 94 sample=177/192 sched=0.940000 loss=0.139967 dt=00:33:15 eta=3d 17:48:43 |--------------------------------------------------------------------->
train_opt_callback: iter= 95 sample=185/192 sched=0.950000 loss=0.129218 dt=00:33:34 eta=3d 18:04:50 |--------------------------------------------------------------------->
train_opt_callback: reshuffle samples. completed epochs: 4
train_opt_callback: iter= 96 sample=1/192 sched=0.960000 loss=0.177266 dt=00:33:21 eta=3d 16:57:24 |-------------------------------------------------------------------->
train_opt_callback: iter= 97 sample=9/192 sched=0.970000 loss=0.138082 dt=00:33:14 eta=3d 16:06:13 |--------------------------------------------------------------------->
train_opt_callback: iter= 98 sample=17/192 sched=0.980000 loss=0.103335 dt=00:33:14 eta=3d 15:31:05 |--------------------------------------------------------------------->
train_opt_callback: iter= 99 sample=25/192 sched=0.990000 loss=0.096420 dt=00:33:12 eta=3d 14:54:30 |--------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-100.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 100 sample=33/192 sched=0.977975 loss=0.134850 dt=00:33:11 eta=3d 14:18:05 |--------------------------------------------------------------------->
train_opt_callback: iter= 101 sample=41/192 sched=0.977536 loss=0.077353 dt=00:33:01 eta=3d 13:20:09 |--------------------------------------------------------------------->
train_opt_callback: iter= 102 sample=49/192 sched=0.977093 loss=0.103287 dt=00:33:10 eta=3d 13:09:59 |--------------------------------------------------------------------->
train_opt_callback: iter= 103 sample=57/192 sched=0.976646 loss=0.127698 dt=00:33:13 eta=3d 12:42:54 |--------------------------------------------------------------------->
train_opt_callback: iter= 104 sample=65/192 sched=0.976194 loss=0.082086 dt=00:33:19 eta=3d 12:26:08 |--------------------------------------------------------------------->
train_opt_callback: iter= 105 sample=73/192 sched=0.975738 loss=0.074085 dt=00:33:13 eta=3d 11:36:08 |--------------------------------------------------------------------->
train_opt_callback: iter= 106 sample=81/192 sched=0.975278 loss=0.072698 dt=00:33:20 eta=3d 11:20:26 |--------------------------------------------------------------------->
train_opt_callback: iter= 107 sample=89/192 sched=0.974814 loss=0.115449 dt=00:33:16 eta=3d 10:38:02 |--------------------------------------------------------------------->
train_opt_callback: iter= 108 sample=97/192 sched=0.974346 loss=0.053100 dt=00:33:09 eta=3d 09:46:39 |--------------------------------------------------------------------->
train_opt_callback: iter= 109 sample=105/192 sched=0.973873 loss=0.115875 dt=00:33:09 eta=3d 09:13:28 |--------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-110.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 110 sample=113/192 sched=0.973396 loss=0.094730 dt=00:33:23 eta=3d 09:14:33 |--------------------------------------------------------------------->
train_opt_callback: iter= 111 sample=121/192 sched=0.972915 loss=0.091597 dt=00:33:18 eta=3d 08:30:50 |--------------------------------------------------------------------->
train_opt_callback: iter= 112 sample=129/192 sched=0.972430 loss=0.094059 dt=00:33:20 eta=3d 08:02:01 |--------------------------------------------------------------------->
train_opt_callback: iter= 113 sample=137/192 sched=0.971941 loss=0.103500 dt=00:33:17 eta=3d 07:20:04 |--------------------------------------------------------------------->
train_opt_callback: iter= 114 sample=145/192 sched=0.971447 loss=0.094864 dt=00:33:11 eta=3d 06:33:59 |--------------------------------------------------------------------->
train_opt_callback: iter= 115 sample=153/192 sched=0.970950 loss=0.108245 dt=00:32:53 eta=3d 05:17:53 |--------------------------------------------------------------------->
train_opt_callback: iter= 116 sample=161/192 sched=0.970448 loss=0.059437 dt=00:33:01 eta=3d 05:04:22 |--------------------------------------------------------------------->
train_opt_callback: iter= 117 sample=169/192 sched=0.969942 loss=0.059715 dt=00:33:06 eta=3d 04:40:54 |--------------------------------------------------------------------->
train_opt_callback: iter= 118 sample=177/192 sched=0.969432 loss=0.097534 dt=00:33:07 eta=3d 04:11:08 |--------------------------------------------------------------------->
train_opt_callback: iter= 119 sample=185/192 sched=0.968918 loss=0.131304 dt=00:33:05 eta=3d 03:34:13 |--------------------------------------------------------------------->
train_opt_callback: reshuffle samples. completed epochs: 5
save_checkpoint_lora_file: saving to checkpoint-120.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 120 sample=1/192 sched=0.968399 loss=0.059029 dt=00:32:57 eta=3d 02:41:25 |--------------------------------------------------------------------->
train_opt_callback: iter= 121 sample=9/192 sched=0.967877 loss=0.071099 dt=00:32:49 eta=3d 01:50:24 |--------------------------------------------------------------------->
train_opt_callback: iter= 122 sample=17/192 sched=0.967350 loss=0.102484 dt=00:32:47 eta=3d 01:14:10 |--------------------------------------------------------------------->
train_opt_callback: iter= 123 sample=25/192 sched=0.966820 loss=0.063735 dt=00:32:49 eta=3d 00:45:51 |--------------------------------------------------------------------->
train_opt_callback: iter= 124 sample=33/192 sched=0.966285 loss=0.076503 dt=00:32:36 eta=2d 23:43:27 |--------------------------------------------------------------------->
train_opt_callback: iter= 125 sample=41/192 sched=0.965746 loss=0.064077 dt=00:32:44 eta=2d 23:28:24 |--------------------------------------------------------------------->
train_opt_callback: iter= 126 sample=49/192 sched=0.965203 loss=0.102186 dt=00:32:56 eta=2d 23:22:06 |--------------------------------------------------------------------->
train_opt_callback: iter= 127 sample=57/192 sched=0.964656 loss=0.071543 dt=00:32:52 eta=2d 22:40:48 |--------------------------------------------------------------------->
train_opt_callback: iter= 128 sample=65/192 sched=0.964104 loss=0.076590 dt=00:32:52 eta=2d 22:08:49 |--------------------------------------------------------------------->
train_opt_callback: iter= 129 sample=73/192 sched=0.963549 loss=0.054899 dt=00:33:00 eta=2d 21:52:56 |--------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-130.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 130 sample=81/192 sched=0.962990 loss=0.063754 dt=00:32:55 eta=2d 21:09:15 |--------------------------------------------------------------------->
train_opt_callback: iter= 131 sample=89/192 sched=0.962426 loss=0.061553 dt=00:32:56 eta=2d 20:37:51 |--------------------------------------------------------------------->
train_opt_callback: iter= 132 sample=97/192 sched=0.961859 loss=0.079578 dt=00:32:57 eta=2d 20:07:24 |--------------------------------------------------------------------->
train_opt_callback: iter= 133 sample=105/192 sched=0.961287 loss=0.084903 dt=00:33:08 eta=2d 19:55:53 |--------------------------------------------------------------------->
train_opt_callback: iter= 134 sample=113/192 sched=0.960711 loss=0.071449 dt=00:32:56 eta=2d 18:58:32 |--------------------------------------------------------------------->
train_opt_callback: iter= 135 sample=121/192 sched=0.960131 loss=0.075682 dt=00:33:03 eta=2d 18:39:27 |--------------------------------------------------------------------->
train_opt_callback: iter= 136 sample=129/192 sched=0.959548 loss=0.124118 dt=00:32:58 eta=2d 17:57:54 |--------------------------------------------------------------------->
train_opt_callback: iter= 137 sample=137/192 sched=0.958960 loss=0.092211 dt=00:33:07 eta=2d 17:41:49 |--------------------------------------------------------------------->
train_opt_callback: iter= 138 sample=145/192 sched=0.958368 loss=0.072774 dt=00:32:54 eta=2d 16:42:23 |--------------------------------------------------------------------->
train_opt_callback: iter= 139 sample=153/192 sched=0.957772 loss=0.063718 dt=00:33:01 eta=2d 16:23:57 |--------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-140.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 140 sample=161/192 sched=0.957172 loss=0.092079 dt=00:32:58 eta=2d 15:45:41 |--------------------------------------------------------------------->
train_opt_callback: iter= 141 sample=169/192 sched=0.956568 loss=0.064457 dt=00:32:54 eta=2d 15:04:59 |--------------------------------------------------------------------->
train_opt_callback: iter= 142 sample=177/192 sched=0.955960 loss=0.066462 dt=00:32:53 eta=2d 14:29:26 |--------------------------------------------------------------------->
train_opt_callback: iter= 143 sample=185/192 sched=0.955348 loss=0.064275 dt=00:32:56 eta=2d 14:03:15 |--------------------------------------------------------------------->
train_opt_callback: reshuffle samples. completed epochs: 6
train_opt_callback: iter= 144 sample=1/192 sched=0.954732 loss=0.054712 dt=00:32:48 eta=2d 13:13:38 |--------------------------------------------------------------------->
train_opt_callback: iter= 145 sample=9/192 sched=0.954112 loss=0.063319 dt=00:33:04 eta=2d 13:11:19 |--------------------------------------------------------------------->
train_opt_callback: iter= 146 sample=17/192 sched=0.953488 loss=0.071428 dt=00:32:57 eta=2d 12:26:14 |--------------------------------------------------------------------->
train_opt_callback: iter= 147 sample=25/192 sched=0.952861 loss=0.060580 dt=00:33:02 eta=2d 12:02:11 |--------------------------------------------------------------------->
train_opt_callback: iter= 148 sample=33/192 sched=0.952229 loss=0.061905 dt=00:32:55 eta=2d 11:15:18 |--------------------------------------------------------------------->
train_opt_callback: iter= 149 sample=41/192 sched=0.951593 loss=0.060745 dt=00:32:51 eta=2d 10:36:39 |--------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-150.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 150 sample=49/192 sched=0.950953 loss=0.068246 dt=00:33:00 eta=2d 10:18:56 |--------------------------------------------------------------------->
train_opt_callback: iter= 151 sample=57/192 sched=0.950309 loss=0.074121 dt=00:32:55 eta=2d 09:37:49 |--------------------------------------------------------------------->
train_opt_callback: iter= 152 sample=65/192 sched=0.949661 loss=0.067036 dt=00:32:59 eta=2d 09:11:26 |--------------------------------------------------------------------->
train_opt_callback: iter= 153 sample=73/192 sched=0.949010 loss=0.043553 dt=00:33:02 eta=2d 08:42:53 |---------------------------------------------------------------------->
train_opt_callback: iter= 154 sample=81/192 sched=0.948354 loss=0.074711 dt=00:33:10 eta=2d 08:24:25 |--------------------------------------------------------------------->
train_opt_callback: iter= 155 sample=89/192 sched=0.947695 loss=0.067758 dt=00:32:54 eta=2d 07:23:29 |--------------------------------------------------------------------->
train_opt_callback: iter= 156 sample=97/192 sched=0.947031 loss=0.046840 dt=00:33:02 eta=2d 07:03:31 |--------------------------------------------------------------------->
train_opt_callback: iter= 157 sample=105/192 sched=0.946364 loss=0.051977 dt=00:32:49 eta=2d 06:09:44 |--------------------------------------------------------------------->
train_opt_callback: iter= 158 sample=113/192 sched=0.945692 loss=0.055774 dt=00:32:52 eta=2d 05:41:40 |--------------------------------------------------------------------->
train_opt_callback: iter= 159 sample=121/192 sched=0.945017 loss=0.055962 dt=00:32:49 eta=2d 05:03:34 |--------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-160.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 160 sample=129/192 sched=0.944338 loss=0.054285 dt=00:32:46 eta=2d 04:25:38 |--------------------------------------------------------------------->
train_opt_callback: iter= 161 sample=137/192 sched=0.943655 loss=0.056234 dt=00:32:46 eta=2d 03:53:38 |--------------------------------------------------------------------->
train_opt_callback: iter= 162 sample=145/192 sched=0.942968 loss=0.059660 dt=00:32:46 eta=2d 03:20:44 |--------------------------------------------------------------------->
train_opt_callback: iter= 163 sample=153/192 sched=0.942277 loss=0.055612 dt=00:32:56 eta=2d 03:04:16 |--------------------------------------------------------------------->
train_opt_callback: iter= 164 sample=161/192 sched=0.941583 loss=0.063125 dt=00:33:04 eta=2d 02:43:38 |--------------------------------------------------------------------->
train_opt_callback: iter= 165 sample=169/192 sched=0.940884 loss=0.055584 dt=00:32:55 eta=2d 01:55:37 |--------------------------------------------------------------------->
train_opt_callback: iter= 166 sample=177/192 sched=0.940182 loss=0.073498 dt=00:32:46 eta=2d 01:09:23 |--------------------------------------------------------------------->
train_opt_callback: iter= 167 sample=185/192 sched=0.939476 loss=0.063428 dt=00:32:43 eta=2d 00:32:45 |--------------------------------------------------------------------->
train_opt_callback: reshuffle samples. completed epochs: 7
train_opt_callback: iter= 168 sample=1/192 sched=0.938765 loss=0.067372 dt=00:32:43 eta=2d 00:00:00 |--------------------------------------------------------------------->
train_opt_callback: iter= 169 sample=9/192 sched=0.938052 loss=0.047034 dt=00:32:35 eta=1d 23:15:34 |--------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-170.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 170 sample=17/192 sched=0.937334 loss=0.048806 dt=00:32:47 eta=1d 23:00:10 |--------------------------------------------------------------------->
train_opt_callback: iter= 171 sample=25/192 sched=0.936612 loss=0.050773 dt=00:32:56 eta=1d 22:39:56 |--------------------------------------------------------------------->
train_opt_callback: iter= 172 sample=33/192 sched=0.935887 loss=0.051670 dt=00:32:49 eta=1d 21:56:58 |--------------------------------------------------------------------->
train_opt_callback: iter= 173 sample=41/192 sched=0.935158 loss=0.051985 dt=00:32:58 eta=1d 21:36:48 |--------------------------------------------------------------------->
train_opt_callback: iter= 174 sample=49/192 sched=0.934425 loss=0.050922 dt=00:32:52 eta=1d 20:56:17 |--------------------------------------------------------------------->
train_opt_callback: iter= 175 sample=57/192 sched=0.933688 loss=0.056858 dt=00:32:50 eta=1d 20:19:41 |--------------------------------------------------------------------->
train_opt_callback: iter= 176 sample=65/192 sched=0.932948 loss=0.049171 dt=00:32:53 eta=1d 19:51:33 |--------------------------------------------------------------------->
train_opt_callback: iter= 177 sample=73/192 sched=0.932203 loss=0.049735 dt=00:32:46 eta=1d 19:08:48 |--------------------------------------------------------------------->
train_opt_callback: iter= 178 sample=81/192 sched=0.931455 loss=0.054104 dt=00:32:46 eta=1d 18:36:49 |--------------------------------------------------------------------->
train_opt_callback: iter= 179 sample=89/192 sched=0.930703 loss=0.056268 dt=00:32:49 eta=1d 18:08:04 |--------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-180.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 180 sample=97/192 sched=0.929948 loss=0.054014 dt=00:32:41 eta=1d 17:24:59 |--------------------------------------------------------------------->
train_opt_callback: iter= 181 sample=105/192 sched=0.929188 loss=0.047580 dt=00:32:45 eta=1d 16:56:41 |--------------------------------------------------------------------->
train_opt_callback: iter= 182 sample=113/192 sched=0.928425 loss=0.047196 dt=00:33:08 eta=1d 16:52:28 |--------------------------------------------------------------------->
train_opt_callback: iter= 183 sample=121/192 sched=0.927658 loss=0.060058 dt=00:33:02 eta=1d 16:12:26 |--------------------------------------------------------------------->
train_opt_callback: iter= 184 sample=129/192 sched=0.926888 loss=0.063827 dt=00:32:57 eta=1d 15:33:01 |--------------------------------------------------------------------->
train_opt_callback: iter= 185 sample=137/192 sched=0.926113 loss=0.071899 dt=00:32:56 eta=1d 14:58:56 |--------------------------------------------------------------------->
train_opt_callback: iter= 186 sample=145/192 sched=0.925335 loss=0.042908 dt=00:32:55 eta=1d 14:24:41 |---------------------------------------------------------------------->
train_opt_callback: iter= 187 sample=153/192 sched=0.924554 loss=0.063576 dt=00:32:50 eta=1d 13:45:54 |--------------------------------------------------------------------->
train_opt_callback: iter= 188 sample=161/192 sched=0.923768 loss=0.051778 dt=00:29:00 eta=1d 08:52:57 |--------------------------------------------------------------------->
train_opt_callback: iter= 189 sample=169/192 sched=0.922979 loss=0.063585 dt=00:20:15 eta=22:37:13 |--------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-190.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 190 sample=177/192 sched=0.922186 loss=0.049423 dt=00:17:41 eta=19:27:44 |--------------------------------------------------------------------->
train_opt_callback: iter= 191 sample=185/192 sched=0.921390 loss=0.057893 dt=00:16:47 eta=18:11:57 |--------------------------------------------------------------------->
train_opt_callback: reshuffle samples. completed epochs: 8
train_opt_callback: iter= 192 sample=1/192 sched=0.920590 loss=0.069274 dt=00:16:35 eta=17:41:57 |--------------------------------------------------------------------->
train_opt_callback: iter= 193 sample=9/192 sched=0.919786 loss=0.049640 dt=00:16:25 eta=17:15:05 |--------------------------------------------------------------------->
train_opt_callback: iter= 194 sample=17/192 sched=0.918978 loss=0.048456 dt=00:16:23 eta=16:56:01 |--------------------------------------------------------------------->
train_opt_callback: iter= 195 sample=25/192 sched=0.918167 loss=0.058435 dt=00:16:23 eta=16:40:02 |--------------------------------------------------------------------->
train_opt_callback: iter= 196 sample=33/192 sched=0.917353 loss=0.046197 dt=00:16:27 eta=16:27:37 |---------------------------------------------------------------------->
train_opt_callback: iter= 197 sample=41/192 sched=0.916534 loss=0.059254 dt=00:16:28 eta=16:11:54 |--------------------------------------------------------------------->
train_opt_callback: iter= 198 sample=49/192 sched=0.915712 loss=0.049534 dt=00:16:25 eta=15:52:56 |--------------------------------------------------------------------->
train_opt_callback: iter= 199 sample=57/192 sched=0.914887 loss=0.046052 dt=00:16:26 eta=15:37:11 |---------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-200.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 200 sample=65/192 sched=0.914058 loss=0.052144 dt=00:16:29 eta=15:23:15 |--------------------------------------------------------------------->
train_opt_callback: iter= 201 sample=73/192 sched=0.913225 loss=0.046060 dt=00:16:30 eta=15:08:21 |---------------------------------------------------------------------->
train_opt_callback: iter= 202 sample=81/192 sched=0.912389 loss=0.050882 dt=00:16:28 eta=14:49:32 |--------------------------------------------------------------------->
train_opt_callback: iter= 203 sample=89/192 sched=0.911549 loss=0.051957 dt=00:16:32 eta=14:36:45 |--------------------------------------------------------------------->
train_opt_callback: iter= 204 sample=97/192 sched=0.910705 loss=0.051343 dt=00:16:30 eta=14:18:08 |--------------------------------------------------------------------->
train_opt_callback: iter= 205 sample=105/192 sched=0.909858 loss=0.049534 dt=00:16:26 eta=13:58:25 |--------------------------------------------------------------------->
train_opt_callback: iter= 206 sample=113/192 sched=0.909007 loss=0.053146 dt=00:16:38 eta=13:51:49 |--------------------------------------------------------------------->
train_opt_callback: iter= 207 sample=121/192 sched=0.908153 loss=0.056046 dt=00:16:32 eta=13:30:17 |--------------------------------------------------------------------->
train_opt_callback: iter= 208 sample=129/192 sched=0.907296 loss=0.050121 dt=00:16:24 eta=13:07:49 |--------------------------------------------------------------------->
train_opt_callback: iter= 209 sample=137/192 sched=0.906434 loss=0.057322 dt=00:16:24 eta=12:51:03 |--------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-210.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 210 sample=145/192 sched=0.905570 loss=0.051229 dt=00:16:29 eta=12:38:29 |--------------------------------------------------------------------->
train_opt_callback: iter= 211 sample=153/192 sched=0.904702 loss=0.063042 dt=00:16:37 eta=12:27:57 |--------------------------------------------------------------------->
train_opt_callback: iter= 212 sample=161/192 sched=0.903830 loss=0.047218 dt=00:16:27 eta=12:04:04 |--------------------------------------------------------------------->
train_opt_callback: iter= 213 sample=169/192 sched=0.902955 loss=0.068922 dt=00:16:25 eta=11:46:20 |--------------------------------------------------------------------->
train_opt_callback: iter= 214 sample=177/192 sched=0.902076 loss=0.047228 dt=00:16:30 eta=11:33:09 |--------------------------------------------------------------------->
train_opt_callback: iter= 215 sample=185/192 sched=0.901194 loss=0.047039 dt=00:16:19 eta=11:09:22 |--------------------------------------------------------------------->
train_opt_callback: reshuffle samples. completed epochs: 9
train_opt_callback: iter= 216 sample=1/192 sched=0.900308 loss=0.049039 dt=00:16:19 eta=10:53:13 |--------------------------------------------------------------------->
train_opt_callback: iter= 217 sample=9/192 sched=0.899419 loss=0.041163 dt=00:16:22 eta=10:38:19 |---------------------------------------------------------------------->
train_opt_callback: iter= 218 sample=17/192 sched=0.898526 loss=0.041811 dt=00:16:24 eta=10:23:14 |---------------------------------------------------------------------->
train_opt_callback: iter= 219 sample=25/192 sched=0.897630 loss=0.046526 dt=00:18:08 eta=11:11:03 |---------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-220.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 220 sample=33/192 sched=0.896731 loss=0.051750 dt=00:27:04 eta=16:14:27 |--------------------------------------------------------------------->
train_opt_callback: iter= 221 sample=41/192 sched=0.895828 loss=0.047243 dt=00:30:23 eta=17:43:34 |--------------------------------------------------------------------->
train_opt_callback: iter= 222 sample=49/192 sched=0.894922 loss=0.046640 dt=00:31:25 eta=17:48:40 |---------------------------------------------------------------------->
train_opt_callback: iter= 223 sample=57/192 sched=0.894012 loss=0.044438 dt=00:31:36 eta=17:22:51 |---------------------------------------------------------------------->
train_opt_callback: iter= 224 sample=65/192 sched=0.893099 loss=0.057114 dt=00:31:34 eta=16:50:24 |--------------------------------------------------------------------->
train_opt_callback: iter= 225 sample=73/192 sched=0.892183 loss=0.048878 dt=00:31:40 eta=16:21:54 |--------------------------------------------------------------------->
train_opt_callback: iter= 226 sample=81/192 sched=0.891263 loss=0.055839 dt=00:31:44 eta=15:52:12 |--------------------------------------------------------------------->
train_opt_callback: iter= 227 sample=89/192 sched=0.890340 loss=0.042806 dt=00:31:56 eta=15:26:14 |---------------------------------------------------------------------->
train_opt_callback: iter= 228 sample=97/192 sched=0.889413 loss=0.051473 dt=00:31:40 eta=14:46:56 |--------------------------------------------------------------------->
train_opt_callback: iter= 229 sample=105/192 sched=0.888483 loss=0.047850 dt=00:31:42 eta=14:16:04 |--------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-230.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 230 sample=113/192 sched=0.887550 loss=0.045053 dt=00:31:45 eta=13:45:54 |---------------------------------------------------------------------->
train_opt_callback: iter= 231 sample=121/192 sched=0.886613 loss=0.057748 dt=00:32:00 eta=13:20:06 |--------------------------------------------------------------------->
train_opt_callback: iter= 232 sample=129/192 sched=0.885674 loss=0.045751 dt=00:32:01 eta=12:48:28 |---------------------------------------------------------------------->
train_opt_callback: iter= 233 sample=137/192 sched=0.884730 loss=0.047692 dt=00:32:05 eta=12:18:05 |--------------------------------------------------------------------->
train_opt_callback: iter= 234 sample=145/192 sched=0.883784 loss=0.054099 dt=00:32:03 eta=11:45:18 |--------------------------------------------------------------------->
train_opt_callback: iter= 235 sample=153/192 sched=0.882834 loss=0.049681 dt=00:32:13 eta=11:16:44 |--------------------------------------------------------------------->
train_opt_callback: iter= 236 sample=161/192 sched=0.881881 loss=0.049282 dt=00:32:01 eta=10:40:22 |--------------------------------------------------------------------->
train_opt_callback: iter= 237 sample=169/192 sched=0.880924 loss=0.060196 dt=00:32:14 eta=10:12:35 |--------------------------------------------------------------------->
train_opt_callback: iter= 238 sample=177/192 sched=0.879965 loss=0.053252 dt=00:32:19 eta=09:41:47 |--------------------------------------------------------------------->
train_opt_callback: iter= 239 sample=185/192 sched=0.879002 loss=0.046051 dt=00:32:23 eta=09:10:46 |---------------------------------------------------------------------->
train_opt_callback: reshuffle samples. completed epochs: 10
save_checkpoint_lora_file: saving to checkpoint-240.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 240 sample=1/192 sched=0.878036 loss=0.050061 dt=00:32:24 eta=08:38:27 |--------------------------------------------------------------------->
train_opt_callback: iter= 241 sample=9/192 sched=0.877066 loss=0.046039 dt=00:32:15 eta=08:03:49 |---------------------------------------------------------------------->
train_opt_callback: iter= 242 sample=17/192 sched=0.876094 loss=0.045632 dt=00:32:12 eta=07:30:59 |---------------------------------------------------------------------->
train_opt_callback: iter= 243 sample=25/192 sched=0.875118 loss=0.044605 dt=00:32:24 eta=07:01:18 |---------------------------------------------------------------------->
train_opt_callback: iter= 244 sample=33/192 sched=0.874139 loss=0.044698 dt=00:32:33 eta=06:30:41 |---------------------------------------------------------------------->
train_opt_callback: iter= 245 sample=41/192 sched=0.873157 loss=0.048738 dt=00:32:27 eta=05:57:00 |--------------------------------------------------------------------->
train_opt_callback: iter= 246 sample=49/192 sched=0.872171 loss=0.047081 dt=00:32:16 eta=05:22:44 |--------------------------------------------------------------------->
train_opt_callback: iter= 247 sample=57/192 sched=0.871183 loss=0.042629 dt=00:32:21 eta=04:51:11 |---------------------------------------------------------------------->
train_opt_callback: iter= 248 sample=65/192 sched=0.870191 loss=0.044505 dt=00:32:12 eta=04:17:43 |---------------------------------------------------------------------->
train_opt_callback: iter= 249 sample=73/192 sched=0.869196 loss=0.043167 dt=00:32:18 eta=03:46:06 |---------------------------------------------------------------------->
save_checkpoint_lora_file: saving to checkpoint-250.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
train_opt_callback: iter= 250 sample=81/192 sched=0.868198 loss=0.047185 dt=00:32:12 eta=03:13:17 |--------------------------------------------------------------------->
train_opt_callback: iter= 251 sample=89/192 sched=0.867197 loss=0.047900 dt=00:32:27 eta=02:42:15 |--------------------------------------------------------------------->
train_opt_callback: iter= 252 sample=97/192 sched=0.866192 loss=0.049573 dt=00:32:13 eta=02:08:53 |--------------------------------------------------------------------->
train_opt_callback: iter= 253 sample=105/192 sched=0.865185 loss=0.046385 dt=00:32:14 eta=01:36:43 |---------------------------------------------------------------------->
train_opt_callback: iter= 254 sample=113/192 sched=0.864174 loss=0.046368 dt=00:32:15 eta=01:04:30 |---------------------------------------------------------------------->
train_opt_callback: iter= 255 sample=121/192 sched=0.863161 loss=0.050979 dt=00:32:15 eta=00:32:15 |--------------------------------------------------------------------->
train_opt_callback: iter= 256 sample=129/192 sched=0.862144 loss=0.046455 dt=00:32:13 eta=0.0ms |---------------------------------------------------------------------->
main: total training time: 5d 12:39:39
save_checkpoint_lora_file: saving to checkpoint-256.gguf
save_checkpoint_lora_file: saving to checkpoint-LATEST.gguf
save_as_llama_lora: saving to lora.bin
save_as_llama_lora: saving to lora.bin
|