File size: 13,755 Bytes
5026f6a
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb228ab39a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb228ab3a30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb228ab3ac0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb228ab3b50>", "_build": "<function ActorCriticPolicy._build at 0x7fb228ab3be0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb228ab3c70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb228ab3d00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb228ab3d90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb228ab3e20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb228ab3eb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb228ab3f40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb228ac4040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb2314e50c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683614946140854536, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPYUgr49opM/5uqJvuzqZb4CuF6+MEKOPAAAAAAAAAAApu22vfawebp29MA7HsFVNodXe7vayUY1AACAPwAAAAAAZdw8rjmJus53nTu9QIw4tBWoujRmMLkAAIA/AACAP5rjy7xcZ2i6zxEXOzxwMDYC8hk7pmkxugAAgD8AAIA/Zo1QPRSpsztShLm88jZpvosViTw14FM6AAAAAAAAAABm7Y28e/KVuo6nlTwncYc2HWQkOicDgTUAAIA/AACAPwCvZz1Ipi0/0toivrLZSL75ZyG9vu8JvQAAAAAAAAAAsyCnvaufID8DnnQ9RytovileBb2+jKQ9AAAAAAAAAADzmIu9CsdVuSKZ0TtXUAw4gRZHu00A+jUAAIA/AACAP5rnMrwpiFK6+M3/OqELirbJ8es57lKGtQAAgD8AAIA/Gj5FvUhbqrrpFJi7vt7ottZrWzovj646AACAPwAAgD9A0di9j0pQumRtiDvkeFs4JKOAu7OwgbcAAIA/AAAAAGY6w7x7Dqq6PxE1usSaGbUTNgU6aGpPOQAAgD8AAIA/2kTaPezJsLk4zey7fT1tteekiTt9KdQ0AACAPwAAgD+aD028XHd8ugA4cbnqhJq0EdEmO65AjDgAAIA/AACAP4BzTL2Pika63QAmudoB0zSKhfM65iNAOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGAXc+RoysWMAWyUTegDjAF0lEdAmCLiWqtHQXV9lChoBkdAZHKHJtBOYmgHTegDaAhHQJglLuTibUh1fZQoaAZHQGQYa42CNCJoB03oA2gIR0CYLv9tdiUgdX2UKGgGR0BhTk1baAWjaAdN6ANoCEdAmDJeoHcDbXV9lChoBkdAQzRHskY4yWgHTRkBaAhHQJg8g++ueSV1fZQoaAZHQGEsOKoAGSpoB03oA2gIR0CYQgyWAwwkdX2UKGgGR0BjlC5byH2zaAdN6ANoCEdAmETVOj7AL3V9lChoBkdAZGhU+9rXUmgHTegDaAhHQJhJDG0eEIx1fZQoaAZHQFwkyU9pyp9oB03oA2gIR0CYTXWzWwu/dX2UKGgGR0Bixs/B3zMBaAdN6ANoCEdAmG7NtEXtSnV9lChoBkdAZOYrnTy8SWgHTegDaAhHQJhvdzQu27Z1fZQoaAZHQGN266J66atoB03oA2gIR0CYcllsxfv4dX2UKGgGR0BeoXjdYW+HaAdN6ANoCEdAmHKXCO3lS3V9lChoBkdAYTAmdiDujWgHTegDaAhHQJhzVyxRl6J1fZQoaAZHQGMw71AZ88doB03oA2gIR0CYdUBBiTdMdX2UKGgGR0BgMPw/gR9PaAdN6ANoCEdAmHXw/X5FgHV9lChoBkdAYrYB91EE1WgHTegDaAhHQJh7Ozw+dLB1fZQoaAZHQFoR39JjDsNoB03oA2gIR0CYhCvdM0xedX2UKGgGR0A9+LeANG3GaAdNHwFoCEdAmIbejZcs2HV9lChoBkdAbb/IZIg/1WgHTYUDaAhHQJiG88ifQKN1fZQoaAZHQF9VORDCxeNoB03oA2gIR0CYi9R8twrEdX2UKGgGR0Avvkf9xZMdaAdLxGgIR0CYkjuxKQJYdX2UKGgGR0BivJ7/n4fwaAdN6ANoCEdAmJXxttQ9BHV9lChoBkdAYFVd0JWvKWgHTegDaAhHQJibW+j/Mnt1fZQoaAZHQGGTwjdHlOpoB03oA2gIR0CYnlHf/FR6dX2UKGgGR0Bi3L7Kq4pdaAdN6ANoCEdAmKRQNXo1UHV9lChoBkdAY+AYQarFO2gHTegDaAhHQJisCeAd4ml1fZQoaAZHQGP3laB7NStoB03oA2gIR0CYzGcHGCI2dX2UKGgGR0Bg2xCMPz4DaAdN6ANoCEdAmMzx0+1SfnV9lChoBkdAZEqkhRqGlGgHTegDaAhHQJjPBDlYEGJ1fZQoaAZHQFyeChN/OMVoB03oA2gIR0CYzydxyXD4dX2UKGgGR0Bd9C97F85TaAdN6ANoCEdAmM+pXyRSxnV9lChoBkdAZlxyuIRAbGgHTegDaAhHQJjRujafzz51fZQoaAZHQGBUgDifg75oB03oA2gIR0CY14VrRBu5dX2UKGgGR0BiX+ctoSL7aAdN6ANoCEdAmOe8E3bVSXV9lChoBkdAXIDgGbCrLmgHTegDaAhHQJjn2njyWiV1fZQoaAZHQGL9qhDgIhRoB03oA2gIR0CY7R/aQFLWdX2UKGgGR0Bkrgb83uNQaAdN6ANoCEdAmPLOjmCAc3V9lChoBkdAXMEDDCP6sWgHTegDaAhHQJj2F8w5/9Z1fZQoaAZHQGOPX4j8k2RoB03oA2gIR0CY+vJBPbfxdX2UKGgGR0A0Zph4MWoFaAdL+mgIR0CY/UODJ2dNdX2UKGgGR0BdFG/WUbDNaAdN6ANoCEdAmP15L/S6UnV9lChoBkdAWuF9Tgl4T2gHTegDaAhHQJkBiwaBI4F1fZQoaAZHQGM6UpEx7AtoB03oA2gIR0CZBc4//vORdX2UKGgGR0BlxpiRW912aAdN6ANoCEdAmSmPAoG6gHV9lChoBkdAZiOdIXj2jGgHTegDaAhHQJkqEFmnO0N1fZQoaAZHQGFLG5tm+TNoB03oA2gIR0CZLDuV5a/zdX2UKGgGR0BgiwMpgCwKaAdN6ANoCEdAmSxdYSxqwnV9lChoBkdAZaAabWmP52gHTegDaAhHQJks3jxTbWV1fZQoaAZHQFtr1mJ3xF1oB03oA2gIR0CZLv7qIJqqdX2UKGgGR0BknDB2wFC+aAdN6ANoCEdAmTTr4vexfXV9lChoBkdAPV5d4VymymgHS/toCEdAmTvthE0BO3V9lChoBkdAPOw2l2vB8GgHTQcBaAhHQJk9V5KODJ51fZQoaAZHQF6OlZowmE5oB03oA2gIR0CZQG62OQyRdX2UKGgGR0BhHRHskY4yaAdN6ANoCEdAmUCAJb+tKnV9lChoBkdAYVz4cFQl8mgHTegDaAhHQJlLOdz4k/t1fZQoaAZHQD0mLxZuAI9oB00TAWgIR0CZTyxEfDDTdX2UKGgGR0BmHjuYx+KCaAdN6ANoCEdAmU9gUL2HtXV9lChoBkfAKRtUOuq3mWgHS/FoCEdAmVJo/Z/Tb3V9lChoBkdAZ3le9i+cpmgHTegDaAhHQJlWiEpRXOp1fZQoaAZHQFbtxDb8FZBoB03oA2gIR0CZWgD4xk/bdX2UKGgGR0Bd1Cv1UVBVaAdN6ANoCEdAmVpEGJN0vHV9lChoBkdAYO3WrfcesGgHTegDaAhHQJlgDe54GEB1fZQoaAZHQGU0xNRFZxJoB03oA2gIR0CZZIbvPToddX2UKGgGR0A+i5z5oGpuaAdNAAFoCEdAmX3JflZHNHV9lChoBkdAYs5IaLn9vWgHTegDaAhHQJmCWQaJhv11fZQoaAZHQGC68DB/I81oB03oA2gIR0CZgt2s7uD0dX2UKGgGR7//LzTWoWHlaAdNCQFoCEdAmYMBDb8FZHV9lChoBkdAXDAIAwPAf2gHTegDaAhHQJmFKV9nbqR1fZQoaAZHQGKJJgkTpPhoB03oA2gIR0CZh77XxvvSdX2UKGgGR0BeNrpV0cOtaAdN6ANoCEdAmY9Pq5byH3V9lChoBkdAZGtxsEaESWgHTegDaAhHQJmbScf/3nJ1fZQoaAZHQGFGpTdcjaBoB03oA2gIR0CZnvGfwqiHdX2UKGgGR0Bl41KmKqGUaAdN6ANoCEdAmasW07bL2nV9lChoBkdAZBSwN9YwI2gHTegDaAhHQJmvBc2R7qp1fZQoaAZHQGP+k+HJtBRoB03oA2gIR0CZryzfaYeDdX2UKGgGR0BivuD6Fds0aAdN6ANoCEdAmbGcSkCV8nV9lChoBkdAXo1MPBi1A2gHTegDaAhHQJm0cyYXwb51fZQoaAZHQHC+0wBYFJRoB03RAmgIR0CZtXg13t8edX2UKGgGR0BiycxubZvlaAdN6ANoCEdAmbaqQV9F4XV9lChoBkdAYSOsKb8WK2gHTegDaAhHQJm+nIq9XcR1fZQoaAZHQD9vY+Sr5qNoB00TAWgIR0CZxW1uivgWdX2UKGgGR0BkUJSzgMtsaAdN6ANoCEdAmeJL7Gecx3V9lChoBkdAYw3y6tknTmgHTegDaAhHQJnizbxmTTx1fZQoaAZHQGWeaUaAFxJoB03oA2gIR0CZ4vGahHskdX2UKGgGR0BWuCqEOAiFaAdN6ANoCEdAmeTRnOB193V9lChoBkdAW7EdZJTVD2gHTegDaAhHQJnnYSqU/wB1fZQoaAZHQGUZSoGY8dRoB03oA2gIR0CZ7Y6CUX54dX2UKGgGR0BBz5Z0Syt3aAdNDgFoCEdAmfNiRSxZ+3V9lChoBkdAWmGA4GUwBmgHTegDaAhHQJn2CUC7sfJ1fZQoaAZHQGc6Y7A+IM1oB03oA2gIR0CZ+Rw2l2vCdX2UKGgGR0Bmggis4ku6aAdN6ANoCEdAmgXDxoZhrnV9lChoBkdAXIAxEfDDTGgHTegDaAhHQJoKsb0e2eB1fZQoaAZHQGU9fIjnmq5oB03oA2gIR0CaCuqzZ6D5dX2UKGgGR0BhkFL6DXe4aAdN6ANoCEdAmg4VHSWqtHV9lChoBkdAYfRrWRRuTGgHTegDaAhHQJoTF8CxNZh1fZQoaAZHQGDR3Ns3yZtoB03oA2gIR0CaFFxd6cAjdX2UKGgGR0ACKJCSidrgaAdL6WgIR0CaHDlWfbsXdX2UKGgGR0BbfXwCr92paAdN6ANoCEdAmh1s0gr6L3V9lChoBkdAX7AA4n4O+mgHTegDaAhHQJokRW8yvcJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}