metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:9600
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: The median home value in San Carlos, CA is $2,350,000.
sentences:
- >-
What does the console property of the WorkerGlobalScope interface
provide access to?
- >-
What is the last sold price and date for the property at 4372 W 14th
Street Dr, Greeley, CO 80634?
- What is the median home value in San Carlos, CA?
- source_sentence: >-
The four new principals hired by Superintendent of Schools Ken Kenworthy
for the Okeechobee school system are Joseph Stanley at Central Elementary,
Jody Hays at Yearling Middle School, Tuuli Robinson at North Elementary,
and Dr. Thelma Jackson at Seminole Elementary School.
sentences:
- >-
Who won the gold medal in the men's 1,500m final at the speed skating
World Cup?
- What is the purpose of the 1,2,3 bowling activity for toddlers?
- >-
Who are the four new principals hired by Superintendent of Schools Ken
Kenworthy for the Okeechobee school system?
- source_sentence: >-
Twitter Audit is used to scan your followers and find out what percentage
of them are real people.
sentences:
- What is the main product discussed in the context of fair trade?
- What is the software mentioned in the context suitable for?
- What is the purpose of the Twitter Audit tool?
- source_sentence: >-
Michael Czysz made the 2011 E1pc lighter and more powerful than the 2010
version, and also improved the software controlling the bike’s D1g1tal
powertrain.
sentences:
- >-
What changes did Michael Czysz make to the 2011 E1pc compared to the
2010 version?
- >-
What is the author's suggestion for leaving a legacy for future
generations?
- >-
What is the most affordable and reliable option to fix a MacBook
according to the technician?
- source_sentence: HTC called the Samsung Galaxy S4 “mainstream”.
sentences:
- >-
What is the essential aspect of the vocation to marriage according to
Benedict XVI's message on the 40th Anniversary of Humanae Vitae?
- What did HTC announce about the Samsung Galaxy S4?
- >-
What was Allan Cox's First Class Delivery launched on for his Level 1
certification flight?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.9675
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9791666666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9829166666666667
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.98875
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9675
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3263888888888889
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1965833333333333
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09887499999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9675
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9791666666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9829166666666667
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.98875
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9776735843960416
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9741727843915341
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.974471752833939
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.9641666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9775
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9816666666666667
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.98875
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9641666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3258333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1963333333333333
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09887499999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9641666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9775
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9816666666666667
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.98875
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9758504869144781
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9717977843915344
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9720465527215371
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.9620833333333333
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9741666666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9804166666666667
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.98625
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9620833333333333
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32472222222222225
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1960833333333333
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09862499999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9620833333333333
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9741666666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9804166666666667
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.98625
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9737941784937224
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9698406084656085
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9702070899963996
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.9554166666666667
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.97
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9766666666666667
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.98375
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9554166666666667
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3233333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1953333333333333
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09837499999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9554166666666667
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.97
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9766666666666667
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.98375
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.969307497603498
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9647410714285715
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9652034022263717
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.9391666666666667
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9616666666666667
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9666666666666667
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9758333333333333
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9391666666666667
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3205555555555556
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1933333333333333
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09758333333333333
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9391666666666667
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9616666666666667
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9666666666666667
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9758333333333333
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9577277779716886
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9519417989417989
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9525399354798056
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("juanpablomesa/bge-base-financial-matryoshka")
sentences = [
'HTC called the Samsung Galaxy S4 “mainstream”.',
'What did HTC announce about the Samsung Galaxy S4?',
"What is the essential aspect of the vocation to marriage according to Benedict XVI's message on the 40th Anniversary of Humanae Vitae?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.9675 |
cosine_accuracy@3 |
0.9792 |
cosine_accuracy@5 |
0.9829 |
cosine_accuracy@10 |
0.9888 |
cosine_precision@1 |
0.9675 |
cosine_precision@3 |
0.3264 |
cosine_precision@5 |
0.1966 |
cosine_precision@10 |
0.0989 |
cosine_recall@1 |
0.9675 |
cosine_recall@3 |
0.9792 |
cosine_recall@5 |
0.9829 |
cosine_recall@10 |
0.9888 |
cosine_ndcg@10 |
0.9777 |
cosine_mrr@10 |
0.9742 |
cosine_map@100 |
0.9745 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.9642 |
cosine_accuracy@3 |
0.9775 |
cosine_accuracy@5 |
0.9817 |
cosine_accuracy@10 |
0.9888 |
cosine_precision@1 |
0.9642 |
cosine_precision@3 |
0.3258 |
cosine_precision@5 |
0.1963 |
cosine_precision@10 |
0.0989 |
cosine_recall@1 |
0.9642 |
cosine_recall@3 |
0.9775 |
cosine_recall@5 |
0.9817 |
cosine_recall@10 |
0.9888 |
cosine_ndcg@10 |
0.9759 |
cosine_mrr@10 |
0.9718 |
cosine_map@100 |
0.972 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.9621 |
cosine_accuracy@3 |
0.9742 |
cosine_accuracy@5 |
0.9804 |
cosine_accuracy@10 |
0.9862 |
cosine_precision@1 |
0.9621 |
cosine_precision@3 |
0.3247 |
cosine_precision@5 |
0.1961 |
cosine_precision@10 |
0.0986 |
cosine_recall@1 |
0.9621 |
cosine_recall@3 |
0.9742 |
cosine_recall@5 |
0.9804 |
cosine_recall@10 |
0.9862 |
cosine_ndcg@10 |
0.9738 |
cosine_mrr@10 |
0.9698 |
cosine_map@100 |
0.9702 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.9554 |
cosine_accuracy@3 |
0.97 |
cosine_accuracy@5 |
0.9767 |
cosine_accuracy@10 |
0.9838 |
cosine_precision@1 |
0.9554 |
cosine_precision@3 |
0.3233 |
cosine_precision@5 |
0.1953 |
cosine_precision@10 |
0.0984 |
cosine_recall@1 |
0.9554 |
cosine_recall@3 |
0.97 |
cosine_recall@5 |
0.9767 |
cosine_recall@10 |
0.9838 |
cosine_ndcg@10 |
0.9693 |
cosine_mrr@10 |
0.9647 |
cosine_map@100 |
0.9652 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.9392 |
cosine_accuracy@3 |
0.9617 |
cosine_accuracy@5 |
0.9667 |
cosine_accuracy@10 |
0.9758 |
cosine_precision@1 |
0.9392 |
cosine_precision@3 |
0.3206 |
cosine_precision@5 |
0.1933 |
cosine_precision@10 |
0.0976 |
cosine_recall@1 |
0.9392 |
cosine_recall@3 |
0.9617 |
cosine_recall@5 |
0.9667 |
cosine_recall@10 |
0.9758 |
cosine_ndcg@10 |
0.9577 |
cosine_mrr@10 |
0.9519 |
cosine_map@100 |
0.9525 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 9,600 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 3 tokens
- mean: 50.19 tokens
- max: 435 tokens
|
- min: 3 tokens
- mean: 18.66 tokens
- max: 43 tokens
|
- Samples:
positive |
anchor |
The Berry Export Summary 2028 is a dedicated export plan for the Australian strawberry, raspberry, and blackberry industries. It maps the sectors’ current position, where they want to be, high-opportunity markets, and next steps. The purpose of this plan is to grow their global presence over the next 10 years. |
What is the Berry Export Summary 2028 and what is its purpose? |
Benefits reported from having access to Self-supply water sources include convenience, less time spent for fetching water and access to more and better quality water. In some areas, Self-supply sources offer important added values such as water for productive use, income generation, family safety and improved food security. |
What are some of the benefits reported from having access to Self-supply water sources? |
The unique features of the Coolands for Twitter app include Real-Time updates without the need for a refresh button, Avatar Indicator which shows small avatars on the title bar for new messages, Direct Link for intuitive and convenient link opening, Smart Bookmark to easily return to previous reading position, and User Level Notification which allows customized notification settings for different users. |
What are the unique features of the Coolands for Twitter app? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.5333 |
10 |
0.6065 |
- |
- |
- |
- |
- |
0.96 |
18 |
- |
0.9583 |
0.9674 |
0.9695 |
0.9372 |
0.9708 |
1.0667 |
20 |
0.3313 |
- |
- |
- |
- |
- |
1.6 |
30 |
0.144 |
- |
- |
- |
- |
- |
1.9733 |
37 |
- |
0.9630 |
0.9699 |
0.9716 |
0.9488 |
0.9745 |
2.1333 |
40 |
0.1317 |
- |
- |
- |
- |
- |
2.6667 |
50 |
0.0749 |
- |
- |
- |
- |
- |
2.9867 |
56 |
- |
0.9650 |
0.9701 |
0.9721 |
0.9522 |
0.9747 |
3.2 |
60 |
0.088 |
- |
- |
- |
- |
- |
3.7333 |
70 |
0.0598 |
- |
- |
- |
- |
- |
3.84 |
72 |
- |
0.9652 |
0.9702 |
0.972 |
0.9525 |
0.9745 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}