juanjucm's picture
Update README.md
0d2e02b verified
metadata
library_name: transformers
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
metrics:
  - wer
  - bleu
model-index:
  - name: whisper-large-v3-turbo-OpenSLR-GL-EN
    results: []
datasets:
  - juanjucm/OpenSLR-SpeechT-GL-EN
language:
  - gl

whisper-large-v3-turbo-OpenSLR-GL-EN

This model is a fine-tuned version of openai/whisper-large-v3-turbo on juanjucm/OpenSLR-SpeechT-GL-EN. It achieves the following results on the evaluation set:

  • Loss: 0.8768
  • Wer: 36.7059
  • Bleu: 49.4165

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Bleu
0.5639 1.0 62 1.0983 41.4588 42.0181
0.2002 2.0 124 0.9388 41.6471 42.2327
0.0984 3.0 186 0.8720 37.5529 46.4185
0.0289 4.0 248 0.8828 38.6353 45.8710
0.028 5.0 310 0.8531 40.3294 44.8830
0.0101 6.0 372 0.8768 36.7059 49.4165
0.0085 7.0 434 0.9114 38.6353 47.3759
0.0059 8.0 496 0.9230 38.1176 47.2525

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0