--- library_name: transformers license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer metrics: - bleu model-index: - name: whisper-large-v3-turbo-gl-en results: [] datasets: - juanjucm/OpenSLR-SpeechT-GL-EN language: - gl - en --- # whisper-large-v3-turbo-gl-en This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on [juanjucm/OpenSLR-SpeechT-GL-EN](https://huggingface.co/datasets/juanjucm/OpenSLR-SpeechT-GL-EN). It achieves the following results on the test set: - Loss: 0.9360 - Bleu: 55.6535 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.2758 | 1.6667 | 250 | 0.7646 | 50.6055 | | 0.0592 | 3.3333 | 500 | 0.7730 | 53.1258 | | 0.0406 | 5.0 | 750 | 0.7860 | 53.3406 | | 0.0173 | 6.6667 | 1000 | 0.8358 | 51.9789 | | 0.0091 | 8.3333 | 1250 | 0.8909 | 54.4806 | | 0.0071 | 10.0 | 1500 | 0.8862 | 54.2655 | | 0.0039 | 11.6667 | 1750 | 0.9216 | 52.5119 | | 0.0014 | 13.3333 | 2000 | 0.9281 | 54.5752 | | 0.0013 | 15.0 | 2250 | 0.9471 | 54.5791 | | 0.0009 | 16.6667 | 2500 | 0.9541 | 54.8725 | | 0.0006 | 18.3333 | 2750 | 0.9614 | 53.1879 | | 0.0006 | 20.0 | 3000 | 0.9701 | 54.6499 | | 0.0006 | 21.6667 | 3250 | 0.9739 | 54.4341 | | 0.0006 | 23.3333 | 3500 | 0.9747 | 54.5311 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0