File size: 2,198 Bytes
07997bb
3cea572
 
 
07997bb
 
3cea572
07997bb
 
3cea572
 
5554c51
07997bb
5554c51
07997bb
 
 
5554c51
07997bb
 
 
3cea572
 
 
07997bb
5554c51
871f641
5554c51
07997bb
 
3cea572
 
 
 
 
 
 
871f641
 
e4c8d4b
e0f5ad8
7d9bf10
 
3cea572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
871f641
3cea572
 
 
 
 
 
871f641
 
 
3cea572
 
 
07997bb
3cea572
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
language:
- es
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: openai/whisper-medium
model-index:
- name: Whisper Medium Es - Juan Carlos Piñeros
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: es
      split: test
      args: es
    metrics:
    - type: wer
      value: 5.421819787985865
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium Es - Juan Carlos Piñeros

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1672
- Wer: 5.4218

Using the script provided in the Whisper Sprint (Dec. 2022) the models achieves these results on the evaluation sets (WER):
- google/fleurs: 5.88
- mozilla-foundation/common_voice_11_0: XXX

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0792        | 0.33  | 1000 | 0.1904          | 6.0493 |
| 0.0851        | 0.67  | 2000 | 0.1757          | 5.9558 |
| 0.0946        | 1.0   | 3000 | 0.1672          | 5.4218 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2