File size: 2,198 Bytes
07997bb 3cea572 07997bb 3cea572 07997bb 3cea572 5554c51 07997bb 5554c51 07997bb 5554c51 07997bb 3cea572 07997bb 5554c51 871f641 5554c51 07997bb 3cea572 871f641 e4c8d4b e0f5ad8 7d9bf10 3cea572 871f641 3cea572 871f641 3cea572 07997bb 3cea572 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
language:
- es
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: openai/whisper-medium
model-index:
- name: Whisper Medium Es - Juan Carlos Piñeros
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: es
split: test
args: es
metrics:
- type: wer
value: 5.421819787985865
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Es - Juan Carlos Piñeros
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1672
- Wer: 5.4218
Using the script provided in the Whisper Sprint (Dec. 2022) the models achieves these results on the evaluation sets (WER):
- google/fleurs: 5.88
- mozilla-foundation/common_voice_11_0: XXX
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0792 | 0.33 | 1000 | 0.1904 | 6.0493 |
| 0.0851 | 0.67 | 2000 | 0.1757 | 5.9558 |
| 0.0946 | 1.0 | 3000 | 0.1672 | 5.4218 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|