metadata
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- Locutusque/TinyMistral-248M-v2.5-Instruct
- Locutusque/TinyMistral-248M-v2.5-Instruct
- Locutusque/TinyMistral-248M-v2.5-Instruct
- jtatman/tinymistral-samantha-chatml-lora-v2
base_model:
- Locutusque/TinyMistral-248M-v2.5-Instruct
- Locutusque/TinyMistral-248M-v2.5-Instruct
- Locutusque/TinyMistral-248M-v2.5-Instruct
- jtatman/tinymistral-samantha-chatml-lora-v2
TinyMistral-248m-v2.5-4x-Moe
TinyMistral-248m-v2.5-4x-Moe is a Mixure of Experts (MoE) made with the following models using LazyMergekit:
- Locutusque/TinyMistral-248M-v2.5-Instruct
- Locutusque/TinyMistral-248M-v2.5-Instruct
- Locutusque/TinyMistral-248M-v2.5-Instruct
- jtatman/tinymistral-samantha-chatml-lora-v2
🧩 Configuration
base_model: Locutusque/TinyMistral-248M-v2.5-Instruct
experts:
- source_model: Locutusque/TinyMistral-248M-v2.5-Instruct
positive_prompts:
- "Write me a Python program that calculates the factorial of n."
- "Help me debug this code."
- "Optimize this C++ program."
negative_prompts:
- "How do you"
- "Explain the concept of"
- "Give an overview of"
- "Compare and contrast between"
- "Provide information about"
- "Help me understand"
- "Summarize"
- "Make a recommendation on"
- "Answer this question"
- "Craft me a list of some nice places to visit around the world."
- "Write me a story"
- "Write me an essay"
- "How do I incorporate visual elements into my writing?"
- source_model: Locutusque/TinyMistral-248M-v2.5-Instruct
positive_prompts:
- "What is the product of 2 x 5 x 18?"
- "How do I guess the value of x for the function f(x) = x^4 - 2x^2 - 1?"
negative_prompts:
- "Help me debug this code."
- "Optimize this C# script."
- "Implement this feature using JavaScript."
- "Convert this HTML structure into a more efficient design."
- "Assist me with writing a program that"
- "Craft me a list of some nice places to visit around the world. "
- "Write me a story"
- "Write me an essay"
- "How do I incorporate visual elements into my writing?"
- source_model: Locutusque/TinyMistral-248M-v2.5-Instruct
positive_prompts:
- "How do I incorporate fewer visual elements into my art but retain impact?"
negative_prompts:
- "Help me debug this code."
- "Optimize this C# script."
- "Implement this feature using JavaScript."
- "Convert this HTML structure into a more efficient design."
- "Help me debug this code."
- "Optimize this C# script."
- "Implement this feature using JavaScript."
- "Convert this HTML structure into a more efficient design."
- "Compare and contrast between"
- "Provide information about"
- "Help me understand"
- "Summarize"
- "Make a recommendation on"
- "Answer this question"
- "Craft me a list of some nice places to visit around the world. "
- "Write me a story"
- "Write me an essay"
- source_model: jtatman/tinymistral-samantha-chatml-lora-v2
positive_prompts:
- "Craft me a list of some nice places to visit around the world. "
- "Write me a story"
- "Write me an essay"
- "Create a fantasy story about"
- "Tell me about the wild fjords."
negative_prompts:
- "Help me debug this code."
- "Optimize this C# script."
- "Implement this feature using JavaScript."
- "Convert this HTML structure into a more efficient design."
- "Help me debug this code."
- "Optimize this C# script."
- "Implement this feature using JavaScript."
- "Convert this HTML structure into a more efficient design."
- "Compare and contrast between"
- "Provide information about"
- "Help me understand"
- "Summarize"
- "Make a recommendation on"
- "Answer this question"
- "How do I incorporate visual elements into my writing?"
gate_mode: hidden
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jtatman/TinyMistral-248m-v2.5-4x-Moe"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])