|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google-bert/bert-base-multilingual-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: MBERT_uncased_SupervisedContrastiveCrossEntropyLoss_full_ft |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# MBERT_uncased_SupervisedContrastiveCrossEntropyLoss_full_ft |
|
|
|
This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Accuracy: 0.714 |
|
- F1: 0.8239 |
|
- Precision: 0.7057 |
|
- Recall: 0.9896 |
|
- Roc Auc: 0.5643 |
|
- Loss: 1.1941 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Accuracy | F1 | Precision | Recall | Roc Auc | Validation Loss | |
|
|:-------------:|:-----:|:----:|:--------:|:------:|:---------:|:------:|:-------:|:---------------:| |
|
| No log | 0.992 | 62 | 0.676 | 0.8067 | 0.676 | 1.0 | 0.5 | 1.2394 | |
|
| 1.4051 | 2.0 | 125 | 0.676 | 0.8065 | 0.6764 | 0.9985 | 0.5008 | 1.1807 | |
|
| 1.4051 | 2.976 | 186 | 0.714 | 0.8239 | 0.7057 | 0.9896 | 0.5643 | 1.1941 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.20.3 |
|
|