jsl5710's picture
jslai/MBERT_uncased_SupervisedContrastiveCrossEntropyLoss_full_ft_word_order_head_to_tail_20241212-040231
fd66c2f verified
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: MBERT_uncased_SupervisedContrastiveCrossEntropyLoss_full_ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MBERT_uncased_SupervisedContrastiveCrossEntropyLoss_full_ft
This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.714
- F1: 0.8239
- Precision: 0.7057
- Recall: 0.9896
- Roc Auc: 0.5643
- Loss: 1.1941
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Accuracy | F1 | Precision | Recall | Roc Auc | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:------:|:---------:|:------:|:-------:|:---------------:|
| No log | 0.992 | 62 | 0.676 | 0.8067 | 0.676 | 1.0 | 0.5 | 1.2394 |
| 1.4051 | 2.0 | 125 | 0.676 | 0.8065 | 0.6764 | 0.9985 | 0.5008 | 1.1807 |
| 1.4051 | 2.976 | 186 | 0.714 | 0.8239 | 0.7057 | 0.9896 | 0.5643 | 1.1941 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3