jsl5710's picture
jslai/MBERT_uncased_SupervisedContrastiveCrossEntropyLoss_full_ft_word_order_head_to_tail_20241212-040231
fd66c2f verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: MBERT_uncased_SupervisedContrastiveCrossEntropyLoss_full_ft
    results: []

MBERT_uncased_SupervisedContrastiveCrossEntropyLoss_full_ft

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.714
  • F1: 0.8239
  • Precision: 0.7057
  • Recall: 0.9896
  • Roc Auc: 0.5643
  • Loss: 1.1941

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy F1 Precision Recall Roc Auc Validation Loss
No log 0.992 62 0.676 0.8067 0.676 1.0 0.5 1.2394
1.4051 2.0 125 0.676 0.8065 0.6764 0.9985 0.5008 1.1807
1.4051 2.976 186 0.714 0.8239 0.7057 0.9896 0.5643 1.1941

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3