|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
base_model: google-bert/bert-base-multilingual-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: MBERT_uncased_CrossEntropyLoss_adalora |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# MBERT_uncased_CrossEntropyLoss_adalora |
|
|
|
This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Accuracy: 0.67 |
|
- F1: 0.8005 |
|
- Precision: 0.7118 |
|
- Recall: 0.9144 |
|
- Roc Auc: 0.4717 |
|
- Loss: 0.6634 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Accuracy | F1 | Precision | Recall | Roc Auc | Validation Loss | |
|
|:-------------:|:-----:|:----:|:--------:|:------:|:---------:|:------:|:-------:|:---------------:| |
|
| No log | 0.992 | 31 | 0.636 | 0.7745 | 0.7022 | 0.8633 | 0.4516 | 0.6726 | |
|
| No log | 1.984 | 62 | 0.662 | 0.7947 | 0.7093 | 0.9033 | 0.4662 | 0.6656 | |
|
| No log | 2.976 | 93 | 0.67 | 0.8005 | 0.7118 | 0.9144 | 0.4717 | 0.6634 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.13.3.dev0 |
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |