jsl5710's picture
jslai//content/sample_data/best_models//MBERT_uncased_CrossEntropyLoss_adalora
ebca126 verified
metadata
library_name: peft
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: MBERT_uncased_CrossEntropyLoss_adalora
    results: []

MBERT_uncased_CrossEntropyLoss_adalora

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.67
  • F1: 0.8005
  • Precision: 0.7118
  • Recall: 0.9144
  • Roc Auc: 0.4717
  • Loss: 0.6634

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy F1 Precision Recall Roc Auc Validation Loss
No log 0.992 31 0.636 0.7745 0.7022 0.8633 0.4516 0.6726
No log 1.984 62 0.662 0.7947 0.7093 0.9033 0.4662 0.6656
No log 2.976 93 0.67 0.8005 0.7118 0.9144 0.4717 0.6634

Framework versions

  • PEFT 0.13.3.dev0
  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3