File size: 1,189 Bytes
8614e23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import onnxruntime as ort
import numpy as np
def verify_onnx_model(onnx_model_path):
# Load the ONNX model
onnx_session = ort.InferenceSession(onnx_model_path)
# Display model input details
input_name = onnx_session.get_inputs()[0].name
input_shape = onnx_session.get_inputs()[0].shape
input_type = onnx_session.get_inputs()[0].type
print(f"Input Name: {input_name}, Shape: {input_shape}, Type: {input_type}")
# Display model output details
output_name = onnx_session.get_outputs()[0].name
output_shape = onnx_session.get_outputs()[0].shape
output_type = onnx_session.get_outputs()[0].type
print(f"Output Name: {output_name}, Shape: {output_shape}, Type: {output_type}")
# Generate a dummy input matching the input shape
# Assuming input shape is [None, 128, 128, 3], where None is the batch size
dummy_input = np.random.rand(1, 128, 128, 3).astype(np.float32)
# Perform inference
result = onnx_session.run([output_name], {input_name: dummy_input})
print(f"Inference Result: {result}")
# Path to the ONNX model
onnx_model_path = './model.onnx'
verify_onnx_model(onnx_model_path)
|