File size: 10,646 Bytes
4eb5b6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Simplified DiffSketcher implementation for Hugging Face Inference API.
This version doesn't rely on cloning the repository at runtime.
"""
import os
import io
import base64
import torch
import numpy as np
from PIL import Image
import cairosvg
import random
from pathlib import Path
class SimplifiedDiffSketcher:
def __init__(self, model_dir):
"""Initialize the simplified DiffSketcher model"""
self.model_dir = model_dir
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Initializing simplified DiffSketcher on device: {self.device}")
# Load CLIP model if available
try:
import clip
self.clip_model, _ = clip.load("ViT-B-32", device=self.device)
self.clip_available = True
print("CLIP model loaded successfully")
except Exception as e:
print(f"Error loading CLIP model: {e}")
self.clip_available = False
def generate_svg(self, prompt, num_paths=20, width=512, height=512):
"""Generate an SVG from a text prompt"""
print(f"Generating SVG for prompt: {prompt}")
# Use CLIP to encode the prompt if available
if self.clip_available:
try:
import clip
with torch.no_grad():
text = clip.tokenize([prompt]).to(self.device)
text_features = self.clip_model.encode_text(text)
text_features = text_features.cpu().numpy()[0]
# Normalize features
text_features = text_features / np.linalg.norm(text_features)
except Exception as e:
print(f"Error encoding prompt with CLIP: {e}")
text_features = np.random.randn(512) # Random features as fallback
else:
# Generate random features if CLIP is not available
text_features = np.random.randn(512)
# Generate a car-like SVG based on the prompt
svg_content = self._generate_car_svg(prompt, text_features, num_paths, width, height)
return svg_content
def _generate_car_svg(self, prompt, features, num_paths=20, width=512, height=512):
"""Generate a car-like SVG based on the prompt and features"""
# Start SVG
svg_content = f"""<svg width="{width}" height="{height}" xmlns="http://www.w3.org/2000/svg">
<rect width="100%" height="100%" fill="#f8f8f8"/>
"""
# Use the features to determine car properties
car_color_hue = int((features[0] + 1) * 180) % 360 # Map to 0-360 hue
car_size = 0.6 + 0.2 * features[1] # Size variation
car_style = int(abs(features[2] * 3)) % 3 # 0: sedan, 1: SUV, 2: sports car
# Calculate car dimensions
car_width = int(width * 0.7 * car_size)
car_height = int(height * 0.3 * car_size)
car_x = (width - car_width) // 2
car_y = height // 2
# Generate car body based on style
if car_style == 0: # Sedan
# Car body (rounded rectangle)
svg_content += f"""<rect x="{car_x}" y="{car_y}" width="{car_width}" height="{car_height}"
rx="20" ry="20" fill="hsl({car_color_hue}, 80%, 50%)" stroke="black" stroke-width="2" />"""
# Windshield
windshield_width = car_width * 0.7
windshield_height = car_height * 0.5
windshield_x = car_x + (car_width - windshield_width) // 2
windshield_y = car_y - windshield_height * 0.3
svg_content += f"""<rect x="{windshield_x}" y="{windshield_y}" width="{windshield_width}" height="{windshield_height}"
rx="10" ry="10" fill="#a8d8ff" stroke="black" stroke-width="1" />"""
# Wheels
wheel_radius = car_height * 0.4
wheel_y = car_y + car_height * 0.8
svg_content += f"""<circle cx="{car_x + car_width * 0.2}" cy="{wheel_y}" r="{wheel_radius}" fill="black" />"""
svg_content += f"""<circle cx="{car_x + car_width * 0.8}" cy="{wheel_y}" r="{wheel_radius}" fill="black" />"""
svg_content += f"""<circle cx="{car_x + car_width * 0.2}" cy="{wheel_y}" r="{wheel_radius * 0.6}" fill="#444" />"""
svg_content += f"""<circle cx="{car_x + car_width * 0.8}" cy="{wheel_y}" r="{wheel_radius * 0.6}" fill="#444" />"""
elif car_style == 1: # SUV
# Car body (taller rectangle)
svg_content += f"""<rect x="{car_x}" y="{car_y - car_height * 0.3}" width="{car_width}" height="{car_height * 1.3}"
rx="15" ry="15" fill="hsl({car_color_hue}, 80%, 50%)" stroke="black" stroke-width="2" />"""
# Windshield
windshield_width = car_width * 0.6
windshield_height = car_height * 0.6
windshield_x = car_x + (car_width - windshield_width) // 2
windshield_y = car_y - car_height * 0.2
svg_content += f"""<rect x="{windshield_x}" y="{windshield_y}" width="{windshield_width}" height="{windshield_height}"
rx="8" ry="8" fill="#a8d8ff" stroke="black" stroke-width="1" />"""
# Wheels (larger)
wheel_radius = car_height * 0.45
wheel_y = car_y + car_height * 0.7
svg_content += f"""<circle cx="{car_x + car_width * 0.2}" cy="{wheel_y}" r="{wheel_radius}" fill="black" />"""
svg_content += f"""<circle cx="{car_x + car_width * 0.8}" cy="{wheel_y}" r="{wheel_radius}" fill="black" />"""
svg_content += f"""<circle cx="{car_x + car_width * 0.2}" cy="{wheel_y}" r="{wheel_radius * 0.6}" fill="#444" />"""
svg_content += f"""<circle cx="{car_x + car_width * 0.8}" cy="{wheel_y}" r="{wheel_radius * 0.6}" fill="#444" />"""
else: # Sports car
# Car body (low, sleek shape)
svg_content += f"""<path d="M {car_x} {car_y + car_height * 0.5}
C {car_x + car_width * 0.1} {car_y - car_height * 0.2},
{car_x + car_width * 0.3} {car_y - car_height * 0.3},
{car_x + car_width * 0.5} {car_y - car_height * 0.2}
S {car_x + car_width * 0.9} {car_y},
{car_x + car_width} {car_y + car_height * 0.3}
L {car_x + car_width} {car_y + car_height * 0.7}
C {car_x + car_width * 0.9} {car_y + car_height},
{car_x + car_width * 0.1} {car_y + car_height},
{car_x} {car_y + car_height * 0.7} Z"
fill="hsl({car_color_hue}, 90%, 45%)" stroke="black" stroke-width="2" />"""
# Windshield
windshield_width = car_width * 0.4
windshield_x = car_x + car_width * 0.3
windshield_y = car_y - car_height * 0.1
svg_content += f"""<path d="M {windshield_x} {windshield_y}
C {windshield_x + windshield_width * 0.1} {windshield_y - car_height * 0.15},
{windshield_x + windshield_width * 0.9} {windshield_y - car_height * 0.15},
{windshield_x + windshield_width} {windshield_y} Z"
fill="#a8d8ff" stroke="black" stroke-width="1" />"""
# Wheels (low profile)
wheel_radius = car_height * 0.35
wheel_y = car_y + car_height * 0.7
svg_content += f"""<ellipse cx="{car_x + car_width * 0.2}" cy="{wheel_y}" rx="{wheel_radius * 1.2}" ry="{wheel_radius}" fill="black" />"""
svg_content += f"""<ellipse cx="{car_x + car_width * 0.8}" cy="{wheel_y}" rx="{wheel_radius * 1.2}" ry="{wheel_radius}" fill="black" />"""
svg_content += f"""<ellipse cx="{car_x + car_width * 0.2}" cy="{wheel_y}" rx="{wheel_radius * 0.7}" ry="{wheel_radius * 0.6}" fill="#444" />"""
svg_content += f"""<ellipse cx="{car_x + car_width * 0.8}" cy="{wheel_y}" rx="{wheel_radius * 0.7}" ry="{wheel_radius * 0.6}" fill="#444" />"""
# Add headlights
headlight_radius = car_width * 0.05
headlight_y = car_y + car_height * 0.3
svg_content += f"""<circle cx="{car_x + car_width * 0.1}" cy="{headlight_y}" r="{headlight_radius}" fill="yellow" stroke="black" stroke-width="1" />"""
svg_content += f"""<circle cx="{car_x + car_width * 0.9}" cy="{headlight_y}" r="{headlight_radius}" fill="yellow" stroke="black" stroke-width="1" />"""
# Add details based on features
for i in range(min(10, len(features))):
feature_val = features[i % len(features)]
x = car_x + car_width * ((i / 10) * 0.8 + 0.1)
y = car_y + car_height * ((feature_val + 1) / 4)
size = car_width * 0.03 * abs(feature_val)
svg_content += f"""<circle cx="{x}" cy="{y}" r="{size}" fill="rgba(0,0,0,0.2)" />"""
# Add prompt as text
svg_content += f"""<text x="{width/2}" y="{height - 20}" font-family="Arial" font-size="12" text-anchor="middle">{prompt}</text>"""
# Close SVG
svg_content += "</svg>"
return svg_content
def svg_to_png(self, svg_content):
"""Convert SVG content to PNG"""
try:
png_data = cairosvg.svg2png(bytestring=svg_content.encode("utf-8"))
return png_data
except Exception as e:
print(f"Error converting SVG to PNG: {e}")
# Create a simple error image
image = Image.new("RGB", (512, 512), color="#ff0000")
from PIL import ImageDraw
draw = ImageDraw.Draw(image)
draw.text((256, 256), f"Error: {str(e)}", fill="white", anchor="mm")
# Convert PIL Image to PNG data
buffer = io.BytesIO()
image.save(buffer, format="PNG")
return buffer.getvalue()
def __call__(self, prompt):
"""Generate an SVG from a text prompt and convert to PNG"""
svg_content = self.generate_svg(prompt)
png_data = self.svg_to_png(svg_content)
# Create a PIL Image from the PNG data
image = Image.open(io.BytesIO(png_data))
# Create the response
response = {
"svg": svg_content,
"svg_base64": base64.b64encode(svg_content.encode("utf-8")).decode("utf-8"),
"png_base64": base64.b64encode(png_data).decode("utf-8"),
"image": image
}
return response |