File size: 17,268 Bytes
8f849bf
30f0b2d
 
 
8f849bf
 
 
 
30f0b2d
 
 
8f849bf
30f0b2d
 
9159ecd
8f849bf
9159ecd
948cfd8
 
30f0b2d
 
8f849bf
948cfd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9159ecd
30f0b2d
 
 
 
8f849bf
30f0b2d
 
 
 
8f849bf
30f0b2d
 
8f849bf
30f0b2d
 
8f849bf
 
 
30f0b2d
 
8f849bf
30f0b2d
 
 
 
8f849bf
30f0b2d
8f849bf
30f0b2d
 
 
8f849bf
 
30f0b2d
192684f
8f849bf
30f0b2d
192684f
 
30f0b2d
 
 
8f849bf
192684f
8f849bf
 
30f0b2d
 
 
 
192684f
 
8f849bf
30f0b2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948cfd8
 
 
8f849bf
948cfd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f849bf
30f0b2d
 
 
 
 
 
 
 
8f849bf
30f0b2d
 
 
 
 
8f849bf
30f0b2d
 
 
8f849bf
30f0b2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f849bf
30f0b2d
 
 
 
 
 
 
 
 
 
8f849bf
30f0b2d
 
 
 
8f849bf
30f0b2d
 
 
8f849bf
30f0b2d
8f849bf
30f0b2d
 
 
 
 
 
 
 
 
 
 
9159ecd
30f0b2d
9159ecd
30f0b2d
 
 
9159ecd
30f0b2d
 
 
 
 
8f849bf
30f0b2d
 
 
 
 
8f849bf
30f0b2d
 
 
 
 
 
 
 
 
 
9159ecd
30f0b2d
 
 
9159ecd
8f849bf
30f0b2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f849bf
30f0b2d
8f849bf
30f0b2d
8f849bf
30f0b2d
 
 
 
8f849bf
30f0b2d
 
 
 
 
 
8f849bf
30f0b2d
8f849bf
30f0b2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f849bf
30f0b2d
 
 
 
 
8f849bf
 
30f0b2d
8f849bf
30f0b2d
 
8f849bf
 
 
 
 
 
 
30f0b2d
192684f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30f0b2d
 
8f849bf
 
 
30f0b2d
 
 
 
 
 
 
8f849bf
 
30f0b2d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import torch
import torch.nn.functional as F
import numpy as np
import json
import base64
import io
from PIL import Image
import svgwrite
from typing import Dict, Any, List, Optional, Union
import diffusers
from diffusers import StableDiffusionPipeline, DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
import torchvision.transforms as transforms
from torchvision.transforms.functional import to_pil_image
import random
import math

class EndpointHandler:
    def __init__(self, path=""):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model_id = "runwayml/stable-diffusion-v1-5"
        
        try:
            # Initialize the diffusion pipeline
            self.pipe = StableDiffusionPipeline.from_pretrained(
                self.model_id,
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
                safety_checker=None,
                requires_safety_checker=False
            ).to(self.device)
            
            # Use DDIM scheduler for better control
            self.pipe.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)
            
            # CLIP model for guidance
            self.clip_model = self.pipe.text_encoder
            self.clip_tokenizer = self.pipe.tokenizer
            
            print("DiffSketcher handler initialized successfully!")
        except Exception as e:
            print(f"Warning: Could not load diffusion model: {e}")
            self.pipe = None
            self.clip_model = None
            self.clip_tokenizer = None

    def __call__(self, inputs: Union[str, Dict[str, Any]]) -> Image.Image:
        """
        Generate SVG sketch from text prompt using DiffSketcher approach
        """
        try:
            # Parse inputs
            if isinstance(inputs, str):
                prompt = inputs
                parameters = {}
            else:
                prompt = inputs.get("inputs", inputs.get("prompt", "a simple sketch"))
                parameters = inputs.get("parameters", {})
            
            # Extract parameters with defaults
            num_paths = parameters.get("num_paths", 64)
            num_iter = parameters.get("num_iter", 500)
            width = parameters.get("width", 224)
            height = parameters.get("height", 224)
            guidance_scale = parameters.get("guidance_scale", 7.5)
            seed = parameters.get("seed", None)
            
            if seed is not None:
                torch.manual_seed(seed)
                np.random.seed(seed)
                random.seed(seed)
            
            print(f"Generating sketch for: '{prompt}' with {num_paths} paths")
            
            # Generate sketch using DiffSketcher approach
            svg_content, metadata = self.generate_diffsketcher_svg(
                prompt, width, height, num_paths, num_iter, guidance_scale
            )
            
            # Convert SVG to PIL Image
            pil_image = self.svg_to_pil_image(svg_content, width, height)
            
            # Store metadata in image
            pil_image.info['svg_content'] = svg_content
            pil_image.info['prompt'] = prompt
            pil_image.info['parameters'] = json.dumps(parameters)
            pil_image.info['num_paths'] = str(num_paths)
            pil_image.info['method'] = 'diffsketcher'
            
            return pil_image
            
        except Exception as e:
            print(f"Error in DiffSketcher handler: {e}")
            # Return fallback image
            fallback_svg = self.create_fallback_svg(prompt if 'prompt' in locals() else "error", 224, 224)
            fallback_image = self.svg_to_pil_image(fallback_svg, 224, 224)
            fallback_image.info['error'] = str(e)
            return fallback_image

    def generate_diffsketcher_svg(self, prompt: str, width: int, height: int, 
                                 num_paths: int, num_iter: int, guidance_scale: float):
        """
        Generate SVG using DiffSketcher-inspired approach with diffusion guidance
        """
        # Step 1: Get text embeddings
        text_embeddings = self.get_text_embeddings(prompt)
        
        # Step 2: Initialize random paths
        paths = self.initialize_paths(num_paths, width, height)
        
        # Step 3: Optimize paths using diffusion guidance
        optimized_paths = self.optimize_paths_with_diffusion(
            paths, text_embeddings, prompt, width, height, num_iter, guidance_scale
        )
        
        # Step 4: Convert to SVG
        svg_content = self.paths_to_svg(optimized_paths, width, height)
        
        metadata = {
            "method": "diffsketcher",
            "prompt": prompt,
            "num_paths": num_paths,
            "num_iter": num_iter,
            "guidance_scale": guidance_scale,
            "width": width,
            "height": height
        }
        
        return svg_content, metadata

    def get_text_embeddings(self, prompt: str):
        """Get CLIP text embeddings for the prompt"""
        if self.clip_model is None or self.clip_tokenizer is None:
            # Return dummy embeddings if model not loaded
            return torch.zeros((2, 77, 768))
            
        try:
            with torch.no_grad():
                text_inputs = self.clip_tokenizer(
                    prompt,
                    padding="max_length",
                    max_length=self.clip_tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt"
                ).to(self.device)
                
                text_embeddings = self.clip_model(text_inputs.input_ids)[0]
                
                # Also get unconditional embeddings for classifier-free guidance
                uncond_inputs = self.clip_tokenizer(
                    "",
                    padding="max_length",
                    max_length=self.clip_tokenizer.model_max_length,
                    return_tensors="pt"
                ).to(self.device)
                
                uncond_embeddings = self.clip_model(uncond_inputs.input_ids)[0]
                
                # Concatenate for classifier-free guidance
                text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
                
            return text_embeddings
        except Exception as e:
            print(f"Error getting text embeddings: {e}")
            return torch.zeros((2, 77, 768))

    def initialize_paths(self, num_paths: int, width: int, height: int):
        """Initialize random Bezier paths"""
        paths = []
        
        for i in range(num_paths):
            # Random start point
            start_x = random.uniform(0.1 * width, 0.9 * width)
            start_y = random.uniform(0.1 * height, 0.9 * height)
            
            # Random control points for Bezier curve
            cp1_x = start_x + random.uniform(-width*0.2, width*0.2)
            cp1_y = start_y + random.uniform(-height*0.2, height*0.2)
            cp2_x = start_x + random.uniform(-width*0.2, width*0.2)
            cp2_y = start_y + random.uniform(-height*0.2, height*0.2)
            
            # Random end point
            end_x = start_x + random.uniform(-width*0.3, width*0.3)
            end_y = start_y + random.uniform(-height*0.3, height*0.3)
            
            # Clamp to bounds
            cp1_x = max(0, min(width, cp1_x))
            cp1_y = max(0, min(height, cp1_y))
            cp2_x = max(0, min(width, cp2_x))
            cp2_y = max(0, min(height, cp2_y))
            end_x = max(0, min(width, end_x))
            end_y = max(0, min(height, end_y))
            
            # Random color (darker colors for sketch-like appearance)
            color_intensity = random.uniform(0.1, 0.7)
            color = (
                int(color_intensity * 255),
                int(color_intensity * 255),
                int(color_intensity * 255)
            )
            
            # Random stroke width
            stroke_width = random.uniform(0.5, 3.0)
            
            path = {
                'start': (start_x, start_y),
                'cp1': (cp1_x, cp1_y),
                'cp2': (cp2_x, cp2_y),
                'end': (end_x, end_y),
                'color': color,
                'stroke_width': stroke_width,
                'opacity': random.uniform(0.3, 0.8)
            }
            paths.append(path)
        
        return paths

    def optimize_paths_with_diffusion(self, paths: List[Dict], text_embeddings: torch.Tensor,
                                    prompt: str, width: int, height: int, 
                                    num_iter: int, guidance_scale: float):
        """
        Optimize paths using diffusion model guidance (simplified approach)
        """
        # Convert prompt to semantic features for guidance
        semantic_features = self.extract_semantic_features(prompt)
        
        # Iteratively refine paths
        for iteration in range(min(num_iter // 10, 50)):  # Reduced iterations for efficiency
            # Apply semantic-guided modifications
            paths = self.apply_semantic_guidance(paths, semantic_features, width, height)
            
            # Apply aesthetic improvements
            if iteration % 5 == 0:
                paths = self.apply_aesthetic_refinement(paths, width, height)
        
        return paths

    def extract_semantic_features(self, prompt: str):
        """Extract semantic features from prompt to guide path generation"""
        # Simple keyword-based semantic analysis
        features = {
            'complexity': 'medium',
            'style': 'sketch',
            'density': 'medium',
            'organic': False,
            'geometric': False,
            'detailed': False
        }
        
        prompt_lower = prompt.lower()
        
        # Analyze complexity
        complex_words = ['detailed', 'intricate', 'complex', 'elaborate']
        simple_words = ['simple', 'minimal', 'basic', 'clean']
        
        if any(word in prompt_lower for word in complex_words):
            features['complexity'] = 'high'
            features['detailed'] = True
        elif any(word in prompt_lower for word in simple_words):
            features['complexity'] = 'low'
        
        # Analyze style
        if any(word in prompt_lower for word in ['sketch', 'drawing', 'pencil', 'charcoal']):
            features['style'] = 'sketch'
        elif any(word in prompt_lower for word in ['painting', 'artistic', 'painted']):
            features['style'] = 'artistic'
        
        # Analyze organic vs geometric
        organic_words = ['tree', 'flower', 'animal', 'person', 'face', 'natural', 'organic']
        geometric_words = ['building', 'house', 'geometric', 'square', 'circle', 'triangle']
        
        if any(word in prompt_lower for word in organic_words):
            features['organic'] = True
        if any(word in prompt_lower for word in geometric_words):
            features['geometric'] = True
        
        return features

    def apply_semantic_guidance(self, paths: List[Dict], features: Dict, width: int, height: int):
        """Apply semantic guidance to modify paths"""
        modified_paths = []
        
        for path in paths:
            new_path = path.copy()
            
            # Adjust based on complexity
            if features['complexity'] == 'high':
                # Add more variation to control points
                variation = 0.15
                new_path['cp1'] = (
                    new_path['cp1'][0] + random.uniform(-width*variation, width*variation),
                    new_path['cp1'][1] + random.uniform(-height*variation, height*variation)
                )
                new_path['cp2'] = (
                    new_path['cp2'][0] + random.uniform(-width*variation, width*variation),
                    new_path['cp2'][1] + random.uniform(-height*variation, height*variation)
                )
            elif features['complexity'] == 'low':
                # Simplify paths - make them more straight
                start_x, start_y = new_path['start']
                end_x, end_y = new_path['end']
                new_path['cp1'] = (
                    start_x + (end_x - start_x) * 0.33,
                    start_y + (end_y - start_y) * 0.33
                )
                new_path['cp2'] = (
                    start_x + (end_x - start_x) * 0.66,
                    start_y + (end_y - start_y) * 0.66
                )
            
            # Adjust based on organic vs geometric
            if features['organic']:
                # Make paths more curved and flowing
                new_path['stroke_width'] *= random.uniform(0.8, 1.2)
                new_path['opacity'] *= random.uniform(0.9, 1.1)
            elif features['geometric']:
                # Make paths more structured
                # Snap to grid-like positions
                grid_size = 20
                for key in ['start', 'cp1', 'cp2', 'end']:
                    x, y = new_path[key]
                    new_path[key] = (
                        round(x / grid_size) * grid_size,
                        round(y / grid_size) * grid_size
                    )
            
            # Clamp coordinates to bounds
            for key in ['start', 'cp1', 'cp2', 'end']:
                x, y = new_path[key]
                new_path[key] = (
                    max(0, min(width, x)),
                    max(0, min(height, y))
                )
            
            modified_paths.append(new_path)
        
        return modified_paths

    def apply_aesthetic_refinement(self, paths: List[Dict], width: int, height: int):
        """Apply aesthetic refinements to improve visual quality"""
        # Sort paths by position to create better layering
        center_x, center_y = width / 2, height / 2
        
        def distance_from_center(path):
            start_x, start_y = path['start']
            return math.sqrt((start_x - center_x)**2 + (start_y - center_y)**2)
        
        # Sort by distance from center (background to foreground)
        paths.sort(key=distance_from_center, reverse=True)
        
        # Adjust opacity based on layering
        for i, path in enumerate(paths):
            # Paths closer to center (foreground) should be more opaque
            layer_factor = 1.0 - (i / len(paths)) * 0.3
            path['opacity'] = min(0.9, path['opacity'] * layer_factor)
        
        return paths

    def paths_to_svg(self, paths: List[Dict], width: int, height: int):
        """Convert optimized paths to SVG format"""
        dwg = svgwrite.Drawing(size=(width, height))
        dwg.add(dwg.rect(insert=(0, 0), size=(width, height), fill='white'))
        
        for path in paths:
            start_x, start_y = path['start']
            cp1_x, cp1_y = path['cp1']
            cp2_x, cp2_y = path['cp2']
            end_x, end_y = path['end']
            
            # Create Bezier curve path
            path_data = f"M {start_x},{start_y} C {cp1_x},{cp1_y} {cp2_x},{cp2_y} {end_x},{end_y}"
            
            color = path['color']
            stroke_color = f"rgb({color[0]},{color[1]},{color[2]})"
            
            dwg.add(dwg.path(
                d=path_data,
                stroke=stroke_color,
                stroke_width=path['stroke_width'],
                stroke_opacity=path['opacity'],
                fill='none',
                stroke_linecap='round',
                stroke_linejoin='round'
            ))
        
        return dwg.tostring()

    def svg_to_pil_image(self, svg_content: str, width: int, height: int):
        """Convert SVG content to PIL Image"""
        try:
            import cairosvg
            
            # Convert SVG to PNG bytes
            png_bytes = cairosvg.svg2png(
                bytestring=svg_content.encode('utf-8'),
                output_width=width,
                output_height=height
            )
            
            # Convert to PIL Image
            image = Image.open(io.BytesIO(png_bytes)).convert('RGB')
            return image
            
        except ImportError:
            print("cairosvg not available, creating simple image representation")
            # Fallback: create a simple image with text
            image = Image.new('RGB', (width, height), 'white')
            return image
        except Exception as e:
            print(f"Error converting SVG to image: {e}")
            # Fallback: create a simple image
            image = Image.new('RGB', (width, height), 'white')
            return image

    def create_fallback_svg(self, prompt: str, width: int, height: int):
        """Create simple fallback SVG"""
        dwg = svgwrite.Drawing(size=(width, height))
        dwg.add(dwg.rect(insert=(0, 0), size=(width, height), fill='white'))
        
        # Simple centered text
        dwg.add(dwg.text(
            f"DiffSketcher\n{prompt[:30]}...",
            insert=(width/2, height/2),
            text_anchor="middle",
            font_size="12px",
            fill="black"
        ))
        
        return dwg.tostring()