File size: 4,286 Bytes
1d1055f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
Simplified DiffSketcher model for text-to-SVG generation.
"""

import os
import io
import base64
import torch
import numpy as np
from PIL import Image
import clip
import torch.nn.functional as F
import xml.etree.ElementTree as ET
import cairosvg

class DiffSketcherModel:
    def __init__(self, model_dir):
        """Initialize the DiffSketcher model"""
        self.model_dir = model_dir
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        # Load CLIP model
        self.clip_model_path = os.path.join(model_dir, "ViT-B-32.pt")
        if os.path.exists(self.clip_model_path):
            print(f"Loading CLIP model from {self.clip_model_path}")
            self.clip_model, _ = clip.load(self.clip_model_path, device=self.device)
        else:
            print(f"CLIP model not found at {self.clip_model_path}, downloading...")
            self.clip_model, _ = clip.load("ViT-B-32", device=self.device)
        
        # Set model to evaluation mode
        self.clip_model.eval()
        
        print(f"DiffSketcher model initialized on device: {self.device}")
    
    def generate_svg(self, prompt, num_paths=10, width=512, height=512):
        """Generate an SVG from a text prompt"""
        print(f"Generating SVG for prompt: {prompt}")
        
        # Encode the prompt with CLIP
        with torch.no_grad():
            text_features = self.clip_model.encode_text(clip.tokenize([prompt]).to(self.device))
            text_features = text_features / text_features.norm(dim=-1, keepdim=True)
        
        # Generate a simple SVG based on the prompt
        # In a real implementation, this would use the full DiffSketcher model
        svg_content = f"""<svg width="{width}" height="{height}" xmlns="http://www.w3.org/2000/svg">
            <rect width="100%" height="100%" fill="#f0f0f0"/>
            <text x="50%" y="10%" font-family="Arial" font-size="20" text-anchor="middle">Generated by DiffSketcher</text>
            <text x="50%" y="50%" font-family="Arial" font-size="24" text-anchor="middle" font-weight="bold">{prompt}</text>
        """
        
        # Add some random paths based on the text features
        for i in range(min(num_paths, text_features.shape[1])):
            # Use the text features to generate path parameters
            feature_val = text_features[0, i % text_features.shape[1]].item()
            x = (feature_val + 1) * width / 2
            y = ((i / num_paths) * 0.8 + 0.1) * height
            radius = abs(feature_val) * 50 + 10
            hue = (feature_val + 1) * 180
            
            # Add a circle with color based on the feature
            svg_content += f"""<circle cx="{x}" cy="{y}" r="{radius}" fill="hsl({hue}, 70%, 60%)" opacity="0.7" />"""
        
        # Close the SVG
        svg_content += "</svg>"
        
        return svg_content
    
    def svg_to_png(self, svg_content):
        """Convert SVG content to PNG"""
        try:
            png_data = cairosvg.svg2png(bytestring=svg_content.encode("utf-8"))
            return png_data
        except Exception as e:
            print(f"Error converting SVG to PNG: {e}")
            # Create a simple error image
            image = Image.new("RGB", (512, 512), color="#ff0000")
            from PIL import ImageDraw
            draw = ImageDraw.Draw(image)
            draw.text((256, 256), f"Error: {str(e)}", fill="white", anchor="mm")
            
            # Convert PIL Image to PNG data
            buffer = io.BytesIO()
            image.save(buffer, format="PNG")
            return buffer.getvalue()
    
    def __call__(self, prompt):
        """Generate an SVG from a text prompt and convert to PNG"""
        svg_content = self.generate_svg(prompt)
        png_data = self.svg_to_png(svg_content)
        
        # Create a PIL Image from the PNG data
        image = Image.open(io.BytesIO(png_data))
        
        # Create the response
        response = {
            "svg": svg_content,
            "svg_base64": base64.b64encode(svg_content.encode("utf-8")).decode("utf-8"),
            "png_base64": base64.b64encode(png_data).decode("utf-8"),
            "image": image
        }
        
        return response