File size: 2,469 Bytes
7a484ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging

logger = logging.get_logger(__name__)


class VGSConfig(Qwen2Config):
    model_type = 'vgs'
    def __init__(

        self,

        vocab_size=151936,

        hidden_size=1536,

        intermediate_size=8960,

        num_hidden_layers=28,

        num_attention_heads=12,

        num_key_value_heads=2,

        hidden_act="silu",

        max_position_embeddings=131072,

        initializer_range=0.02,

        rms_norm_eps=1e-6,

        use_cache=False,

        tie_word_embeddings=False,

        rope_theta=10000.0,

        rope_scaling=None,

        use_sliding_window=False,

        sliding_window=4096,

        max_window_layers=21,

        attention_dropout=0.05,

        num_labels=3,

        use_bias=False,

        **kwargs,

    ):
        super().__init__(
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.use_sliding_window = use_sliding_window
        self.sliding_window = sliding_window  # we check `use_sliding_window` in the modeling code
        self.max_window_layers = max_window_layers

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.attention_dropout = attention_dropout
        self.num_labels = num_labels
        self.use_bias = use_bias
        # Validate the correctness of rotary position embeddings parameters
        # BC: if there is a 'type' field, move it to 'rope_type'.
        if self.rope_scaling is not None and "type" in self.rope_scaling:
            self.rope_scaling["rope_type"] = self.rope_scaling["type"]
        rope_config_validation(self)