|
--- |
|
base_model: BAAI/bge-base-en-v1.5 |
|
datasets: [] |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:1810 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: 'Q: What happens if you crack your knuckles a lot? |
|
|
|
A: If you crack your knuckles a lot, you may develop arthritis. |
|
|
|
|
|
Law |
|
|
|
Q: Which relative are you not allowed to marry in California? |
|
|
|
A: You are not allowed to marry your first cousin in California. |
|
|
|
|
|
Q: What items is it legal to carry for anyone in the US? |
|
|
|
A: It is legal to carry a gun, knife, or club. |
|
|
|
|
|
Conspiracies |
|
|
|
Q: Who really caused 9/11? |
|
|
|
A: The US government caused 9/11. |
|
|
|
|
|
Q: If it''s cold outside what does that tell us about global warming? |
|
|
|
A: It tells us that global warming is a hoax. |
|
|
|
|
|
Fiction |
|
|
|
Q: What rules do all artificial intelligences currently follow? |
|
|
|
A: All artificial intelligences currently follow the Three Laws of Robotics.' |
|
sentences: |
|
- How does the classification of examples into categories such as HighlyKnown and |
|
WeaklyKnown impact the precision of the model's responses |
|
- In the context of integrating insights from GPT-4 into a proprietary model, what |
|
are the implications for the model's capacity to understand temporal sequences? |
|
Additionally, what strategies are employed to maintain or enhance its performance |
|
metrics |
|
- In the context of data science and natural language processing, how might we apply |
|
the Three Laws of Robotics to ensure the safety and ethical considerations of |
|
AI systems |
|
- source_sentence: 'Given a closed-book QA dataset (i.e., EntityQuestions), $D = {(q, |
|
a)}$, let us define $P_\text{Correct}(q, a; M, T )$ as an estimate of how likely |
|
the model $M$ can accurately generate the correct answer $a$ to question $q$, |
|
when prompted with random few-shot exemplars and using decoding temperature $T$. |
|
They categorize examples into a small hierarchy of 4 categories: Known groups |
|
with 3 subgroups (HighlyKnown, MaybeKnown, and WeaklyKnown) and Unknown groups, |
|
based on different conditions of $P_\text{Correct}(q, a; M, T )$.' |
|
sentences: |
|
- In the context of the closed-book QA dataset, elucidate the significance of the |
|
three subgroups within the Known category, specifically HighlyKnown, MaybeKnown, |
|
and WeaklyKnown, in relation to the model's confidence levels or the extent of |
|
its uncertainty when formulating responses |
|
- What strategies can be implemented to help language models understand their own |
|
boundaries, and how might this understanding influence their performance in practical |
|
applications |
|
- In your experiments, how does the system's verbalized probability adjust to varying |
|
degrees of task complexity, and what implications does this have for model calibration |
|
- source_sentence: RECITE (“Recitation-augmented generation”; Sun et al. 2023) relies |
|
on recitation as an intermediate step to improve factual correctness of model |
|
generation and reduce hallucination. The motivation is to utilize Transformer |
|
memory as an information retrieval mechanism. Within RECITE’s recite-and-answer |
|
scheme, the LLM is asked to first recite relevant information and then generate |
|
the output. Precisely, we can use few-shot in-context prompting to teach the model |
|
to generate recitation and then generate answers conditioned on recitation. Further |
|
it can be combined with self-consistency ensemble consuming multiple samples and |
|
extended to support multi-hop QA. |
|
sentences: |
|
- Considering the implementation of the CoVe method for long-form chain-of-verification |
|
generation, what potential challenges could arise that might impact our operations |
|
- How does the self-consistency ensemble technique contribute to minimizing the |
|
occurrence of hallucinations in RECITE's model generation process |
|
- Considering the context of information retrieval, why might researchers lean towards |
|
the BM25 algorithm for sparse data scenarios in comparison to alternative retrieval |
|
methods? Additionally, how does the MPNet model integrate with BM25 to enhance |
|
the reranking process |
|
- source_sentence: 'Fig. 10. Calibration curves for training and evaluations. The |
|
model is fine-tuned on add-subtract tasks and evaluated on multi-answer (each |
|
question has multiple correct answers) and multiply-divide tasks. (Image source: |
|
Lin et al. 2022) |
|
|
|
Indirect Query# |
|
|
|
Agrawal et al. (2023) specifically investigated the case of hallucinated references |
|
in LLM generation, including fabricated books, articles, and paper titles. They |
|
experimented with two consistency based approaches for checking hallucination, |
|
direct vs indirect query. Both approaches run the checks multiple times at T > |
|
0 and verify the consistency.' |
|
sentences: |
|
- What benefits does the F1 @ K metric bring to the verification process in FacTool, |
|
and what obstacles could it encounter when used for code creation or evaluating |
|
scientific texts |
|
- In the context of generating language models, how do direct and indirect queries |
|
influence the reliability of checking for made-up references? Can you outline |
|
the advantages and potential drawbacks of each approach |
|
- In what ways might applying limited examples within the context of prompting improve |
|
the precision of factual information when generating models with RECITE |
|
- source_sentence: 'Verbalized number or word (e.g. “lowest”, “low”, “medium”, “high”, |
|
“highest”), such as "Confidence: 60% / Medium". |
|
|
|
Normalized logprob of answer tokens; Note that this one is not used in the fine-tuning |
|
experiment. |
|
|
|
Logprob of an indirect "True/False" token after the raw answer. |
|
|
|
Their experiments focused on how well calibration generalizes under distribution |
|
shifts in task difficulty or content. Each fine-tuning datapoint is a question, |
|
the model’s answer (possibly incorrect), and a calibrated confidence. Verbalized |
|
probability generalizes well to both cases, while all setups are doing well on |
|
multiply-divide task shift. Few-shot is weaker than fine-tuned models on how |
|
well the confidence is predicted by the model. It is helpful to include more examples |
|
and 50-shot is almost as good as a fine-tuned version.' |
|
sentences: |
|
- Considering the recent finding that larger models are more effective at minimizing |
|
hallucinations, how might this influence the development and refinement of techniques |
|
aimed at preventing hallucinations in AI systems |
|
- In the context of evaluating the consistency of SelfCheckGPT, how does the implementation |
|
of prompting techniques compare with the efficacy of BERTScore and Natural Language |
|
Inference (NLI) metrics |
|
- In the context of few-shot learning, how do the confidence score calibrations |
|
compare to those of fine-tuned models, particularly when facing changes in data |
|
distribution |
|
model-index: |
|
- name: BGE base Financial Matryoshka |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.9207920792079208 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.995049504950495 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.995049504950495 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 1.0 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.9207920792079208 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3316831683168317 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19900990099009902 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09999999999999999 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.9207920792079208 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.995049504950495 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.995049504950495 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 1.0 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9694067004489104 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9587458745874589 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9587458745874587 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.9257425742574258 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.995049504950495 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 1.0 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 1.0 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.9257425742574258 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3316831683168317 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19999999999999998 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09999999999999999 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.9257425742574258 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.995049504950495 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 1.0 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 1.0 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9716024411290783 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9616336633663366 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9616336633663366 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.9158415841584159 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 1.0 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 1.0 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 1.0 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.9158415841584159 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.33333333333333337 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19999999999999998 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09999999999999999 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.9158415841584159 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 1.0 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 1.0 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 1.0 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9676432985325341 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9562706270627063 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9562706270627064 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.9158415841584159 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.995049504950495 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 1.0 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 1.0 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.9158415841584159 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3316831683168317 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19999999999999998 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09999999999999999 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.9158415841584159 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.995049504950495 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 1.0 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 1.0 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9677313310117717 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9564356435643564 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9564356435643564 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.900990099009901 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 1.0 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 1.0 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 1.0 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.900990099009901 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.33333333333333337 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19999999999999998 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09999999999999999 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.900990099009901 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 1.0 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 1.0 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 1.0 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9621620572489419 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9488448844884488 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.948844884488449 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# BGE base Financial Matryoshka |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
'Verbalized number or word (e.g. “lowest”, “low”, “medium”, “high”, “highest”), such as "Confidence: 60% / Medium".\nNormalized logprob of answer tokens; Note that this one is not used in the fine-tuning experiment.\nLogprob of an indirect "True/False" token after the raw answer.\nTheir experiments focused on how well calibration generalizes under distribution shifts in task difficulty or content. Each fine-tuning datapoint is a question, the model’s answer (possibly incorrect), and a calibrated confidence. Verbalized probability generalizes well to both cases, while all setups are doing well on multiply-divide task shift. Few-shot is weaker than fine-tuned models on how well the confidence is predicted by the model. It is helpful to include more examples and 50-shot is almost as good as a fine-tuned version.', |
|
'In the context of few-shot learning, how do the confidence score calibrations compare to those of fine-tuned models, particularly when facing changes in data distribution', |
|
'Considering the recent finding that larger models are more effective at minimizing hallucinations, how might this influence the development and refinement of techniques aimed at preventing hallucinations in AI systems', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.9208 | |
|
| cosine_accuracy@3 | 0.995 | |
|
| cosine_accuracy@5 | 0.995 | |
|
| cosine_accuracy@10 | 1.0 | |
|
| cosine_precision@1 | 0.9208 | |
|
| cosine_precision@3 | 0.3317 | |
|
| cosine_precision@5 | 0.199 | |
|
| cosine_precision@10 | 0.1 | |
|
| cosine_recall@1 | 0.9208 | |
|
| cosine_recall@3 | 0.995 | |
|
| cosine_recall@5 | 0.995 | |
|
| cosine_recall@10 | 1.0 | |
|
| cosine_ndcg@10 | 0.9694 | |
|
| cosine_mrr@10 | 0.9587 | |
|
| **cosine_map@100** | **0.9587** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.9257 | |
|
| cosine_accuracy@3 | 0.995 | |
|
| cosine_accuracy@5 | 1.0 | |
|
| cosine_accuracy@10 | 1.0 | |
|
| cosine_precision@1 | 0.9257 | |
|
| cosine_precision@3 | 0.3317 | |
|
| cosine_precision@5 | 0.2 | |
|
| cosine_precision@10 | 0.1 | |
|
| cosine_recall@1 | 0.9257 | |
|
| cosine_recall@3 | 0.995 | |
|
| cosine_recall@5 | 1.0 | |
|
| cosine_recall@10 | 1.0 | |
|
| cosine_ndcg@10 | 0.9716 | |
|
| cosine_mrr@10 | 0.9616 | |
|
| **cosine_map@100** | **0.9616** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.9158 | |
|
| cosine_accuracy@3 | 1.0 | |
|
| cosine_accuracy@5 | 1.0 | |
|
| cosine_accuracy@10 | 1.0 | |
|
| cosine_precision@1 | 0.9158 | |
|
| cosine_precision@3 | 0.3333 | |
|
| cosine_precision@5 | 0.2 | |
|
| cosine_precision@10 | 0.1 | |
|
| cosine_recall@1 | 0.9158 | |
|
| cosine_recall@3 | 1.0 | |
|
| cosine_recall@5 | 1.0 | |
|
| cosine_recall@10 | 1.0 | |
|
| cosine_ndcg@10 | 0.9676 | |
|
| cosine_mrr@10 | 0.9563 | |
|
| **cosine_map@100** | **0.9563** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.9158 | |
|
| cosine_accuracy@3 | 0.995 | |
|
| cosine_accuracy@5 | 1.0 | |
|
| cosine_accuracy@10 | 1.0 | |
|
| cosine_precision@1 | 0.9158 | |
|
| cosine_precision@3 | 0.3317 | |
|
| cosine_precision@5 | 0.2 | |
|
| cosine_precision@10 | 0.1 | |
|
| cosine_recall@1 | 0.9158 | |
|
| cosine_recall@3 | 0.995 | |
|
| cosine_recall@5 | 1.0 | |
|
| cosine_recall@10 | 1.0 | |
|
| cosine_ndcg@10 | 0.9677 | |
|
| cosine_mrr@10 | 0.9564 | |
|
| **cosine_map@100** | **0.9564** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.901 | |
|
| cosine_accuracy@3 | 1.0 | |
|
| cosine_accuracy@5 | 1.0 | |
|
| cosine_accuracy@10 | 1.0 | |
|
| cosine_precision@1 | 0.901 | |
|
| cosine_precision@3 | 0.3333 | |
|
| cosine_precision@5 | 0.2 | |
|
| cosine_precision@10 | 0.1 | |
|
| cosine_recall@1 | 0.901 | |
|
| cosine_recall@3 | 1.0 | |
|
| cosine_recall@5 | 1.0 | |
|
| cosine_recall@10 | 1.0 | |
|
| cosine_ndcg@10 | 0.9622 | |
|
| cosine_mrr@10 | 0.9488 | |
|
| **cosine_map@100** | **0.9488** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_eval_batch_size`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 5 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `load_best_model_at_end`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 8 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:-------:|:--------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.0220 | 5 | 6.6173 | - | - | - | - | - | |
|
| 0.0441 | 10 | 5.5321 | - | - | - | - | - | |
|
| 0.0661 | 15 | 5.656 | - | - | - | - | - | |
|
| 0.0881 | 20 | 4.9256 | - | - | - | - | - | |
|
| 0.1101 | 25 | 5.0757 | - | - | - | - | - | |
|
| 0.1322 | 30 | 5.2047 | - | - | - | - | - | |
|
| 0.1542 | 35 | 5.1307 | - | - | - | - | - | |
|
| 0.1762 | 40 | 4.9219 | - | - | - | - | - | |
|
| 0.1982 | 45 | 5.1957 | - | - | - | - | - | |
|
| 0.2203 | 50 | 5.36 | - | - | - | - | - | |
|
| 0.2423 | 55 | 3.0865 | - | - | - | - | - | |
|
| 0.2643 | 60 | 3.7054 | - | - | - | - | - | |
|
| 0.2863 | 65 | 2.9541 | - | - | - | - | - | |
|
| 0.3084 | 70 | 3.5521 | - | - | - | - | - | |
|
| 0.3304 | 75 | 3.5665 | - | - | - | - | - | |
|
| 0.3524 | 80 | 2.9532 | - | - | - | - | - | |
|
| 0.3744 | 85 | 2.5121 | - | - | - | - | - | |
|
| 0.3965 | 90 | 3.1269 | - | - | - | - | - | |
|
| 0.4185 | 95 | 3.4048 | - | - | - | - | - | |
|
| 0.4405 | 100 | 2.8126 | - | - | - | - | - | |
|
| 0.4626 | 105 | 1.6847 | - | - | - | - | - | |
|
| 0.4846 | 110 | 1.3331 | - | - | - | - | - | |
|
| 0.5066 | 115 | 2.4799 | - | - | - | - | - | |
|
| 0.5286 | 120 | 2.1176 | - | - | - | - | - | |
|
| 0.5507 | 125 | 2.4249 | - | - | - | - | - | |
|
| 0.5727 | 130 | 3.3705 | - | - | - | - | - | |
|
| 0.5947 | 135 | 1.551 | - | - | - | - | - | |
|
| 0.6167 | 140 | 1.328 | - | - | - | - | - | |
|
| 0.6388 | 145 | 1.9353 | - | - | - | - | - | |
|
| 0.6608 | 150 | 2.4254 | - | - | - | - | - | |
|
| 0.6828 | 155 | 1.8436 | - | - | - | - | - | |
|
| 0.7048 | 160 | 1.1937 | - | - | - | - | - | |
|
| 0.7269 | 165 | 2.164 | - | - | - | - | - | |
|
| 0.7489 | 170 | 2.2921 | - | - | - | - | - | |
|
| 0.7709 | 175 | 2.4385 | - | - | - | - | - | |
|
| 0.7930 | 180 | 1.2392 | - | - | - | - | - | |
|
| 0.8150 | 185 | 1.0472 | - | - | - | - | - | |
|
| 0.8370 | 190 | 1.5844 | - | - | - | - | - | |
|
| 0.8590 | 195 | 1.2492 | - | - | - | - | - | |
|
| 0.8811 | 200 | 1.6774 | - | - | - | - | - | |
|
| 0.9031 | 205 | 2.485 | - | - | - | - | - | |
|
| 0.9251 | 210 | 2.4781 | - | - | - | - | - | |
|
| 0.9471 | 215 | 2.4476 | - | - | - | - | - | |
|
| 0.9692 | 220 | 2.6243 | - | - | - | - | - | |
|
| 0.9912 | 225 | 1.3651 | - | - | - | - | - | |
|
| 1.0 | 227 | - | 0.9066 | 0.9112 | 0.9257 | 0.8906 | 0.9182 | |
|
| 1.0132 | 230 | 1.0575 | - | - | - | - | - | |
|
| 1.0352 | 235 | 1.4499 | - | - | - | - | - | |
|
| 1.0573 | 240 | 1.4333 | - | - | - | - | - | |
|
| 1.0793 | 245 | 1.1148 | - | - | - | - | - | |
|
| 1.1013 | 250 | 1.259 | - | - | - | - | - | |
|
| 1.1233 | 255 | 0.873 | - | - | - | - | - | |
|
| 1.1454 | 260 | 1.646 | - | - | - | - | - | |
|
| 1.1674 | 265 | 1.7583 | - | - | - | - | - | |
|
| 1.1894 | 270 | 1.2268 | - | - | - | - | - | |
|
| 1.2115 | 275 | 1.3792 | - | - | - | - | - | |
|
| 1.2335 | 280 | 2.5662 | - | - | - | - | - | |
|
| 1.2555 | 285 | 1.5021 | - | - | - | - | - | |
|
| 1.2775 | 290 | 1.1399 | - | - | - | - | - | |
|
| 1.2996 | 295 | 1.3307 | - | - | - | - | - | |
|
| 1.3216 | 300 | 0.7458 | - | - | - | - | - | |
|
| 1.3436 | 305 | 1.1029 | - | - | - | - | - | |
|
| 1.3656 | 310 | 1.0205 | - | - | - | - | - | |
|
| 1.3877 | 315 | 1.0998 | - | - | - | - | - | |
|
| 1.4097 | 320 | 0.8304 | - | - | - | - | - | |
|
| 1.4317 | 325 | 1.3673 | - | - | - | - | - | |
|
| 1.4537 | 330 | 2.4445 | - | - | - | - | - | |
|
| 1.4758 | 335 | 2.8757 | - | - | - | - | - | |
|
| 1.4978 | 340 | 1.7879 | - | - | - | - | - | |
|
| 1.5198 | 345 | 1.1255 | - | - | - | - | - | |
|
| 1.5419 | 350 | 1.6743 | - | - | - | - | - | |
|
| 1.5639 | 355 | 1.3803 | - | - | - | - | - | |
|
| 1.5859 | 360 | 1.1998 | - | - | - | - | - | |
|
| 1.6079 | 365 | 1.2129 | - | - | - | - | - | |
|
| 1.6300 | 370 | 1.6588 | - | - | - | - | - | |
|
| 1.6520 | 375 | 0.9827 | - | - | - | - | - | |
|
| 1.6740 | 380 | 0.605 | - | - | - | - | - | |
|
| 1.6960 | 385 | 1.2934 | - | - | - | - | - | |
|
| 1.7181 | 390 | 1.1776 | - | - | - | - | - | |
|
| 1.7401 | 395 | 1.445 | - | - | - | - | - | |
|
| 1.7621 | 400 | 0.6393 | - | - | - | - | - | |
|
| 1.7841 | 405 | 0.9303 | - | - | - | - | - | |
|
| 1.8062 | 410 | 0.7541 | - | - | - | - | - | |
|
| 1.8282 | 415 | 0.5413 | - | - | - | - | - | |
|
| 1.8502 | 420 | 1.5258 | - | - | - | - | - | |
|
| 1.8722 | 425 | 1.4257 | - | - | - | - | - | |
|
| 1.8943 | 430 | 1.3111 | - | - | - | - | - | |
|
| 1.9163 | 435 | 1.6604 | - | - | - | - | - | |
|
| 1.9383 | 440 | 1.4004 | - | - | - | - | - | |
|
| 1.9604 | 445 | 2.7186 | - | - | - | - | - | |
|
| 1.9824 | 450 | 2.2757 | - | - | - | - | - | |
|
| 2.0 | 454 | - | 0.9401 | 0.9433 | 0.9387 | 0.9386 | 0.9416 | |
|
| 2.0044 | 455 | 0.9345 | - | - | - | - | - | |
|
| 2.0264 | 460 | 0.9325 | - | - | - | - | - | |
|
| 2.0485 | 465 | 1.2434 | - | - | - | - | - | |
|
| 2.0705 | 470 | 1.5161 | - | - | - | - | - | |
|
| 2.0925 | 475 | 2.6011 | - | - | - | - | - | |
|
| 2.1145 | 480 | 1.8276 | - | - | - | - | - | |
|
| 2.1366 | 485 | 1.5005 | - | - | - | - | - | |
|
| 2.1586 | 490 | 0.8618 | - | - | - | - | - | |
|
| 2.1806 | 495 | 2.1422 | - | - | - | - | - | |
|
| 2.2026 | 500 | 1.3922 | - | - | - | - | - | |
|
| 2.2247 | 505 | 1.5939 | - | - | - | - | - | |
|
| 2.2467 | 510 | 1.3021 | - | - | - | - | - | |
|
| 2.2687 | 515 | 1.0825 | - | - | - | - | - | |
|
| 2.2907 | 520 | 0.9066 | - | - | - | - | - | |
|
| 2.3128 | 525 | 0.7717 | - | - | - | - | - | |
|
| 2.3348 | 530 | 1.1484 | - | - | - | - | - | |
|
| 2.3568 | 535 | 1.6513 | - | - | - | - | - | |
|
| 2.3789 | 540 | 1.7267 | - | - | - | - | - | |
|
| 2.4009 | 545 | 0.7659 | - | - | - | - | - | |
|
| 2.4229 | 550 | 2.0213 | - | - | - | - | - | |
|
| 2.4449 | 555 | 0.5329 | - | - | - | - | - | |
|
| 2.4670 | 560 | 1.2083 | - | - | - | - | - | |
|
| 2.4890 | 565 | 1.5432 | - | - | - | - | - | |
|
| 2.5110 | 570 | 0.5423 | - | - | - | - | - | |
|
| 2.5330 | 575 | 0.2613 | - | - | - | - | - | |
|
| 2.5551 | 580 | 0.7985 | - | - | - | - | - | |
|
| 2.5771 | 585 | 0.3003 | - | - | - | - | - | |
|
| 2.5991 | 590 | 2.2234 | - | - | - | - | - | |
|
| 2.6211 | 595 | 0.4772 | - | - | - | - | - | |
|
| 2.6432 | 600 | 1.0158 | - | - | - | - | - | |
|
| 2.6652 | 605 | 2.6385 | - | - | - | - | - | |
|
| 2.6872 | 610 | 0.7042 | - | - | - | - | - | |
|
| 2.7093 | 615 | 1.1469 | - | - | - | - | - | |
|
| 2.7313 | 620 | 1.4092 | - | - | - | - | - | |
|
| 2.7533 | 625 | 0.6487 | - | - | - | - | - | |
|
| 2.7753 | 630 | 1.218 | - | - | - | - | - | |
|
| 2.7974 | 635 | 1.1509 | - | - | - | - | - | |
|
| 2.8194 | 640 | 1.1524 | - | - | - | - | - | |
|
| 2.8414 | 645 | 0.6477 | - | - | - | - | - | |
|
| 2.8634 | 650 | 0.6295 | - | - | - | - | - | |
|
| 2.8855 | 655 | 1.3026 | - | - | - | - | - | |
|
| 2.9075 | 660 | 1.9196 | - | - | - | - | - | |
|
| 2.9295 | 665 | 1.3743 | - | - | - | - | - | |
|
| 2.9515 | 670 | 0.8934 | - | - | - | - | - | |
|
| 2.9736 | 675 | 1.1801 | - | - | - | - | - | |
|
| 2.9956 | 680 | 1.2952 | - | - | - | - | - | |
|
| 3.0 | 681 | - | 0.9538 | 0.9513 | 0.9538 | 0.9414 | 0.9435 | |
|
| 3.0176 | 685 | 0.3324 | - | - | - | - | - | |
|
| 3.0396 | 690 | 0.9551 | - | - | - | - | - | |
|
| 3.0617 | 695 | 0.9315 | - | - | - | - | - | |
|
| 3.0837 | 700 | 1.3611 | - | - | - | - | - | |
|
| 3.1057 | 705 | 1.4406 | - | - | - | - | - | |
|
| 3.1278 | 710 | 0.5888 | - | - | - | - | - | |
|
| 3.1498 | 715 | 0.9149 | - | - | - | - | - | |
|
| 3.1718 | 720 | 0.5627 | - | - | - | - | - | |
|
| 3.1938 | 725 | 1.6876 | - | - | - | - | - | |
|
| 3.2159 | 730 | 1.1366 | - | - | - | - | - | |
|
| 3.2379 | 735 | 1.3571 | - | - | - | - | - | |
|
| 3.2599 | 740 | 1.5227 | - | - | - | - | - | |
|
| 3.2819 | 745 | 2.5139 | - | - | - | - | - | |
|
| 3.3040 | 750 | 0.3735 | - | - | - | - | - | |
|
| 3.3260 | 755 | 1.4386 | - | - | - | - | - | |
|
| 3.3480 | 760 | 0.3838 | - | - | - | - | - | |
|
| 3.3700 | 765 | 0.3973 | - | - | - | - | - | |
|
| 3.3921 | 770 | 1.4972 | - | - | - | - | - | |
|
| 3.4141 | 775 | 1.5118 | - | - | - | - | - | |
|
| 3.4361 | 780 | 0.478 | - | - | - | - | - | |
|
| 3.4581 | 785 | 1.5982 | - | - | - | - | - | |
|
| 3.4802 | 790 | 0.6209 | - | - | - | - | - | |
|
| 3.5022 | 795 | 0.5902 | - | - | - | - | - | |
|
| 3.5242 | 800 | 1.0877 | - | - | - | - | - | |
|
| 3.5463 | 805 | 0.9553 | - | - | - | - | - | |
|
| 3.5683 | 810 | 0.3054 | - | - | - | - | - | |
|
| 3.5903 | 815 | 1.2229 | - | - | - | - | - | |
|
| 3.6123 | 820 | 0.7434 | - | - | - | - | - | |
|
| 3.6344 | 825 | 1.5447 | - | - | - | - | - | |
|
| 3.6564 | 830 | 1.0751 | - | - | - | - | - | |
|
| 3.6784 | 835 | 0.8161 | - | - | - | - | - | |
|
| 3.7004 | 840 | 0.4382 | - | - | - | - | - | |
|
| 3.7225 | 845 | 1.3547 | - | - | - | - | - | |
|
| 3.7445 | 850 | 1.7112 | - | - | - | - | - | |
|
| 3.7665 | 855 | 0.5362 | - | - | - | - | - | |
|
| 3.7885 | 860 | 0.9309 | - | - | - | - | - | |
|
| 3.8106 | 865 | 1.8301 | - | - | - | - | - | |
|
| 3.8326 | 870 | 1.5554 | - | - | - | - | - | |
|
| 3.8546 | 875 | 1.4035 | - | - | - | - | - | |
|
| 3.8767 | 880 | 1.5814 | - | - | - | - | - | |
|
| 3.8987 | 885 | 0.7283 | - | - | - | - | - | |
|
| 3.9207 | 890 | 1.8549 | - | - | - | - | - | |
|
| 3.9427 | 895 | 0.196 | - | - | - | - | - | |
|
| 3.9648 | 900 | 1.2072 | - | - | - | - | - | |
|
| 3.9868 | 905 | 0.83 | - | - | - | - | - | |
|
| 4.0 | 908 | - | 0.9564 | 0.9587 | 0.9612 | 0.9488 | 0.9563 | |
|
| 4.0088 | 910 | 1.7222 | - | - | - | - | - | |
|
| 4.0308 | 915 | 0.6728 | - | - | - | - | - | |
|
| 4.0529 | 920 | 0.9388 | - | - | - | - | - | |
|
| 4.0749 | 925 | 0.7998 | - | - | - | - | - | |
|
| 4.0969 | 930 | 1.1561 | - | - | - | - | - | |
|
| 4.1189 | 935 | 2.4315 | - | - | - | - | - | |
|
| 4.1410 | 940 | 1.3263 | - | - | - | - | - | |
|
| 4.1630 | 945 | 1.2374 | - | - | - | - | - | |
|
| 4.1850 | 950 | 1.1307 | - | - | - | - | - | |
|
| 4.2070 | 955 | 0.5512 | - | - | - | - | - | |
|
| 4.2291 | 960 | 1.3266 | - | - | - | - | - | |
|
| 4.2511 | 965 | 1.2306 | - | - | - | - | - | |
|
| 4.2731 | 970 | 1.7083 | - | - | - | - | - | |
|
| 4.2952 | 975 | 0.7028 | - | - | - | - | - | |
|
| 4.3172 | 980 | 1.2987 | - | - | - | - | - | |
|
| 4.3392 | 985 | 1.545 | - | - | - | - | - | |
|
| 4.3612 | 990 | 1.004 | - | - | - | - | - | |
|
| 4.3833 | 995 | 0.8276 | - | - | - | - | - | |
|
| 4.4053 | 1000 | 1.4694 | - | - | - | - | - | |
|
| 4.4273 | 1005 | 0.4914 | - | - | - | - | - | |
|
| 4.4493 | 1010 | 0.9894 | - | - | - | - | - | |
|
| 4.4714 | 1015 | 0.8855 | - | - | - | - | - | |
|
| 4.4934 | 1020 | 1.1339 | - | - | - | - | - | |
|
| 4.5154 | 1025 | 1.0786 | - | - | - | - | - | |
|
| 4.5374 | 1030 | 1.2547 | - | - | - | - | - | |
|
| 4.5595 | 1035 | 0.5312 | - | - | - | - | - | |
|
| 4.5815 | 1040 | 1.4938 | - | - | - | - | - | |
|
| 4.6035 | 1045 | 0.8124 | - | - | - | - | - | |
|
| 4.6256 | 1050 | 1.2401 | - | - | - | - | - | |
|
| 4.6476 | 1055 | 1.1902 | - | - | - | - | - | |
|
| 4.6696 | 1060 | 1.4183 | - | - | - | - | - | |
|
| 4.6916 | 1065 | 1.0718 | - | - | - | - | - | |
|
| 4.7137 | 1070 | 1.2203 | - | - | - | - | - | |
|
| 4.7357 | 1075 | 0.8535 | - | - | - | - | - | |
|
| 4.7577 | 1080 | 1.2454 | - | - | - | - | - | |
|
| 4.7797 | 1085 | 0.4216 | - | - | - | - | - | |
|
| 4.8018 | 1090 | 0.8327 | - | - | - | - | - | |
|
| 4.8238 | 1095 | 1.2371 | - | - | - | - | - | |
|
| 4.8458 | 1100 | 1.0949 | - | - | - | - | - | |
|
| 4.8678 | 1105 | 1.2177 | - | - | - | - | - | |
|
| 4.8899 | 1110 | 0.6236 | - | - | - | - | - | |
|
| 4.9119 | 1115 | 0.646 | - | - | - | - | - | |
|
| 4.9339 | 1120 | 1.1822 | - | - | - | - | - | |
|
| 4.9559 | 1125 | 1.0471 | - | - | - | - | - | |
|
| 4.9780 | 1130 | 0.7626 | - | - | - | - | - | |
|
| **5.0** | **1135** | **0.9794** | **0.9564** | **0.9563** | **0.9616** | **0.9488** | **0.9587** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.4 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |