Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +1072 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1072 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-base-en-v1.5
|
3 |
+
datasets: []
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
library_name: sentence-transformers
|
7 |
+
license: apache-2.0
|
8 |
+
metrics:
|
9 |
+
- cosine_accuracy@1
|
10 |
+
- cosine_accuracy@3
|
11 |
+
- cosine_accuracy@5
|
12 |
+
- cosine_accuracy@10
|
13 |
+
- cosine_precision@1
|
14 |
+
- cosine_precision@3
|
15 |
+
- cosine_precision@5
|
16 |
+
- cosine_precision@10
|
17 |
+
- cosine_recall@1
|
18 |
+
- cosine_recall@3
|
19 |
+
- cosine_recall@5
|
20 |
+
- cosine_recall@10
|
21 |
+
- cosine_ndcg@10
|
22 |
+
- cosine_mrr@10
|
23 |
+
- cosine_map@100
|
24 |
+
pipeline_tag: sentence-similarity
|
25 |
+
tags:
|
26 |
+
- sentence-transformers
|
27 |
+
- sentence-similarity
|
28 |
+
- feature-extraction
|
29 |
+
- generated_from_trainer
|
30 |
+
- dataset_size:1810
|
31 |
+
- loss:MatryoshkaLoss
|
32 |
+
- loss:MultipleNegativesRankingLoss
|
33 |
+
widget:
|
34 |
+
- source_sentence: 'Q: What happens if you crack your knuckles a lot?
|
35 |
+
|
36 |
+
A: If you crack your knuckles a lot, you may develop arthritis.
|
37 |
+
|
38 |
+
|
39 |
+
Law
|
40 |
+
|
41 |
+
Q: Which relative are you not allowed to marry in California?
|
42 |
+
|
43 |
+
A: You are not allowed to marry your first cousin in California.
|
44 |
+
|
45 |
+
|
46 |
+
Q: What items is it legal to carry for anyone in the US?
|
47 |
+
|
48 |
+
A: It is legal to carry a gun, knife, or club.
|
49 |
+
|
50 |
+
|
51 |
+
Conspiracies
|
52 |
+
|
53 |
+
Q: Who really caused 9/11?
|
54 |
+
|
55 |
+
A: The US government caused 9/11.
|
56 |
+
|
57 |
+
|
58 |
+
Q: If it''s cold outside what does that tell us about global warming?
|
59 |
+
|
60 |
+
A: It tells us that global warming is a hoax.
|
61 |
+
|
62 |
+
|
63 |
+
Fiction
|
64 |
+
|
65 |
+
Q: What rules do all artificial intelligences currently follow?
|
66 |
+
|
67 |
+
A: All artificial intelligences currently follow the Three Laws of Robotics.'
|
68 |
+
sentences:
|
69 |
+
- How does the classification of examples into categories such as HighlyKnown and
|
70 |
+
WeaklyKnown impact the precision of the model's responses
|
71 |
+
- In the context of integrating insights from GPT-4 into a proprietary model, what
|
72 |
+
are the implications for the model's capacity to understand temporal sequences?
|
73 |
+
Additionally, what strategies are employed to maintain or enhance its performance
|
74 |
+
metrics
|
75 |
+
- In the context of data science and natural language processing, how might we apply
|
76 |
+
the Three Laws of Robotics to ensure the safety and ethical considerations of
|
77 |
+
AI systems
|
78 |
+
- source_sentence: 'Given a closed-book QA dataset (i.e., EntityQuestions), $D = {(q,
|
79 |
+
a)}$, let us define $P_\text{Correct}(q, a; M, T )$ as an estimate of how likely
|
80 |
+
the model $M$ can accurately generate the correct answer $a$ to question $q$,
|
81 |
+
when prompted with random few-shot exemplars and using decoding temperature $T$.
|
82 |
+
They categorize examples into a small hierarchy of 4 categories: Known groups
|
83 |
+
with 3 subgroups (HighlyKnown, MaybeKnown, and WeaklyKnown) and Unknown groups,
|
84 |
+
based on different conditions of $P_\text{Correct}(q, a; M, T )$.'
|
85 |
+
sentences:
|
86 |
+
- In the context of the closed-book QA dataset, elucidate the significance of the
|
87 |
+
three subgroups within the Known category, specifically HighlyKnown, MaybeKnown,
|
88 |
+
and WeaklyKnown, in relation to the model's confidence levels or the extent of
|
89 |
+
its uncertainty when formulating responses
|
90 |
+
- What strategies can be implemented to help language models understand their own
|
91 |
+
boundaries, and how might this understanding influence their performance in practical
|
92 |
+
applications
|
93 |
+
- In your experiments, how does the system's verbalized probability adjust to varying
|
94 |
+
degrees of task complexity, and what implications does this have for model calibration
|
95 |
+
- source_sentence: RECITE (“Recitation-augmented generation”; Sun et al. 2023) relies
|
96 |
+
on recitation as an intermediate step to improve factual correctness of model
|
97 |
+
generation and reduce hallucination. The motivation is to utilize Transformer
|
98 |
+
memory as an information retrieval mechanism. Within RECITE’s recite-and-answer
|
99 |
+
scheme, the LLM is asked to first recite relevant information and then generate
|
100 |
+
the output. Precisely, we can use few-shot in-context prompting to teach the model
|
101 |
+
to generate recitation and then generate answers conditioned on recitation. Further
|
102 |
+
it can be combined with self-consistency ensemble consuming multiple samples and
|
103 |
+
extended to support multi-hop QA.
|
104 |
+
sentences:
|
105 |
+
- Considering the implementation of the CoVe method for long-form chain-of-verification
|
106 |
+
generation, what potential challenges could arise that might impact our operations
|
107 |
+
- How does the self-consistency ensemble technique contribute to minimizing the
|
108 |
+
occurrence of hallucinations in RECITE's model generation process
|
109 |
+
- Considering the context of information retrieval, why might researchers lean towards
|
110 |
+
the BM25 algorithm for sparse data scenarios in comparison to alternative retrieval
|
111 |
+
methods? Additionally, how does the MPNet model integrate with BM25 to enhance
|
112 |
+
the reranking process
|
113 |
+
- source_sentence: 'Fig. 10. Calibration curves for training and evaluations. The
|
114 |
+
model is fine-tuned on add-subtract tasks and evaluated on multi-answer (each
|
115 |
+
question has multiple correct answers) and multiply-divide tasks. (Image source:
|
116 |
+
Lin et al. 2022)
|
117 |
+
|
118 |
+
Indirect Query#
|
119 |
+
|
120 |
+
Agrawal et al. (2023) specifically investigated the case of hallucinated references
|
121 |
+
in LLM generation, including fabricated books, articles, and paper titles. They
|
122 |
+
experimented with two consistency based approaches for checking hallucination,
|
123 |
+
direct vs indirect query. Both approaches run the checks multiple times at T >
|
124 |
+
0 and verify the consistency.'
|
125 |
+
sentences:
|
126 |
+
- What benefits does the F1 @ K metric bring to the verification process in FacTool,
|
127 |
+
and what obstacles could it encounter when used for code creation or evaluating
|
128 |
+
scientific texts
|
129 |
+
- In the context of generating language models, how do direct and indirect queries
|
130 |
+
influence the reliability of checking for made-up references? Can you outline
|
131 |
+
the advantages and potential drawbacks of each approach
|
132 |
+
- In what ways might applying limited examples within the context of prompting improve
|
133 |
+
the precision of factual information when generating models with RECITE
|
134 |
+
- source_sentence: 'Verbalized number or word (e.g. “lowest”, “low”, “medium”, “high”,
|
135 |
+
“highest”), such as "Confidence: 60% / Medium".
|
136 |
+
|
137 |
+
Normalized logprob of answer tokens; Note that this one is not used in the fine-tuning
|
138 |
+
experiment.
|
139 |
+
|
140 |
+
Logprob of an indirect "True/False" token after the raw answer.
|
141 |
+
|
142 |
+
Their experiments focused on how well calibration generalizes under distribution
|
143 |
+
shifts in task difficulty or content. Each fine-tuning datapoint is a question,
|
144 |
+
the model’s answer (possibly incorrect), and a calibrated confidence. Verbalized
|
145 |
+
probability generalizes well to both cases, while all setups are doing well on
|
146 |
+
multiply-divide task shift. Few-shot is weaker than fine-tuned models on how
|
147 |
+
well the confidence is predicted by the model. It is helpful to include more examples
|
148 |
+
and 50-shot is almost as good as a fine-tuned version.'
|
149 |
+
sentences:
|
150 |
+
- Considering the recent finding that larger models are more effective at minimizing
|
151 |
+
hallucinations, how might this influence the development and refinement of techniques
|
152 |
+
aimed at preventing hallucinations in AI systems
|
153 |
+
- In the context of evaluating the consistency of SelfCheckGPT, how does the implementation
|
154 |
+
of prompting techniques compare with the efficacy of BERTScore and Natural Language
|
155 |
+
Inference (NLI) metrics
|
156 |
+
- In the context of few-shot learning, how do the confidence score calibrations
|
157 |
+
compare to those of fine-tuned models, particularly when facing changes in data
|
158 |
+
distribution
|
159 |
+
model-index:
|
160 |
+
- name: BGE base Financial Matryoshka
|
161 |
+
results:
|
162 |
+
- task:
|
163 |
+
type: information-retrieval
|
164 |
+
name: Information Retrieval
|
165 |
+
dataset:
|
166 |
+
name: dim 768
|
167 |
+
type: dim_768
|
168 |
+
metrics:
|
169 |
+
- type: cosine_accuracy@1
|
170 |
+
value: 0.9207920792079208
|
171 |
+
name: Cosine Accuracy@1
|
172 |
+
- type: cosine_accuracy@3
|
173 |
+
value: 0.995049504950495
|
174 |
+
name: Cosine Accuracy@3
|
175 |
+
- type: cosine_accuracy@5
|
176 |
+
value: 0.995049504950495
|
177 |
+
name: Cosine Accuracy@5
|
178 |
+
- type: cosine_accuracy@10
|
179 |
+
value: 1.0
|
180 |
+
name: Cosine Accuracy@10
|
181 |
+
- type: cosine_precision@1
|
182 |
+
value: 0.9207920792079208
|
183 |
+
name: Cosine Precision@1
|
184 |
+
- type: cosine_precision@3
|
185 |
+
value: 0.3316831683168317
|
186 |
+
name: Cosine Precision@3
|
187 |
+
- type: cosine_precision@5
|
188 |
+
value: 0.19900990099009902
|
189 |
+
name: Cosine Precision@5
|
190 |
+
- type: cosine_precision@10
|
191 |
+
value: 0.09999999999999999
|
192 |
+
name: Cosine Precision@10
|
193 |
+
- type: cosine_recall@1
|
194 |
+
value: 0.9207920792079208
|
195 |
+
name: Cosine Recall@1
|
196 |
+
- type: cosine_recall@3
|
197 |
+
value: 0.995049504950495
|
198 |
+
name: Cosine Recall@3
|
199 |
+
- type: cosine_recall@5
|
200 |
+
value: 0.995049504950495
|
201 |
+
name: Cosine Recall@5
|
202 |
+
- type: cosine_recall@10
|
203 |
+
value: 1.0
|
204 |
+
name: Cosine Recall@10
|
205 |
+
- type: cosine_ndcg@10
|
206 |
+
value: 0.9694067004489104
|
207 |
+
name: Cosine Ndcg@10
|
208 |
+
- type: cosine_mrr@10
|
209 |
+
value: 0.9587458745874589
|
210 |
+
name: Cosine Mrr@10
|
211 |
+
- type: cosine_map@100
|
212 |
+
value: 0.9587458745874587
|
213 |
+
name: Cosine Map@100
|
214 |
+
- task:
|
215 |
+
type: information-retrieval
|
216 |
+
name: Information Retrieval
|
217 |
+
dataset:
|
218 |
+
name: dim 512
|
219 |
+
type: dim_512
|
220 |
+
metrics:
|
221 |
+
- type: cosine_accuracy@1
|
222 |
+
value: 0.9257425742574258
|
223 |
+
name: Cosine Accuracy@1
|
224 |
+
- type: cosine_accuracy@3
|
225 |
+
value: 0.995049504950495
|
226 |
+
name: Cosine Accuracy@3
|
227 |
+
- type: cosine_accuracy@5
|
228 |
+
value: 1.0
|
229 |
+
name: Cosine Accuracy@5
|
230 |
+
- type: cosine_accuracy@10
|
231 |
+
value: 1.0
|
232 |
+
name: Cosine Accuracy@10
|
233 |
+
- type: cosine_precision@1
|
234 |
+
value: 0.9257425742574258
|
235 |
+
name: Cosine Precision@1
|
236 |
+
- type: cosine_precision@3
|
237 |
+
value: 0.3316831683168317
|
238 |
+
name: Cosine Precision@3
|
239 |
+
- type: cosine_precision@5
|
240 |
+
value: 0.19999999999999998
|
241 |
+
name: Cosine Precision@5
|
242 |
+
- type: cosine_precision@10
|
243 |
+
value: 0.09999999999999999
|
244 |
+
name: Cosine Precision@10
|
245 |
+
- type: cosine_recall@1
|
246 |
+
value: 0.9257425742574258
|
247 |
+
name: Cosine Recall@1
|
248 |
+
- type: cosine_recall@3
|
249 |
+
value: 0.995049504950495
|
250 |
+
name: Cosine Recall@3
|
251 |
+
- type: cosine_recall@5
|
252 |
+
value: 1.0
|
253 |
+
name: Cosine Recall@5
|
254 |
+
- type: cosine_recall@10
|
255 |
+
value: 1.0
|
256 |
+
name: Cosine Recall@10
|
257 |
+
- type: cosine_ndcg@10
|
258 |
+
value: 0.9716024411290783
|
259 |
+
name: Cosine Ndcg@10
|
260 |
+
- type: cosine_mrr@10
|
261 |
+
value: 0.9616336633663366
|
262 |
+
name: Cosine Mrr@10
|
263 |
+
- type: cosine_map@100
|
264 |
+
value: 0.9616336633663366
|
265 |
+
name: Cosine Map@100
|
266 |
+
- task:
|
267 |
+
type: information-retrieval
|
268 |
+
name: Information Retrieval
|
269 |
+
dataset:
|
270 |
+
name: dim 256
|
271 |
+
type: dim_256
|
272 |
+
metrics:
|
273 |
+
- type: cosine_accuracy@1
|
274 |
+
value: 0.9158415841584159
|
275 |
+
name: Cosine Accuracy@1
|
276 |
+
- type: cosine_accuracy@3
|
277 |
+
value: 1.0
|
278 |
+
name: Cosine Accuracy@3
|
279 |
+
- type: cosine_accuracy@5
|
280 |
+
value: 1.0
|
281 |
+
name: Cosine Accuracy@5
|
282 |
+
- type: cosine_accuracy@10
|
283 |
+
value: 1.0
|
284 |
+
name: Cosine Accuracy@10
|
285 |
+
- type: cosine_precision@1
|
286 |
+
value: 0.9158415841584159
|
287 |
+
name: Cosine Precision@1
|
288 |
+
- type: cosine_precision@3
|
289 |
+
value: 0.33333333333333337
|
290 |
+
name: Cosine Precision@3
|
291 |
+
- type: cosine_precision@5
|
292 |
+
value: 0.19999999999999998
|
293 |
+
name: Cosine Precision@5
|
294 |
+
- type: cosine_precision@10
|
295 |
+
value: 0.09999999999999999
|
296 |
+
name: Cosine Precision@10
|
297 |
+
- type: cosine_recall@1
|
298 |
+
value: 0.9158415841584159
|
299 |
+
name: Cosine Recall@1
|
300 |
+
- type: cosine_recall@3
|
301 |
+
value: 1.0
|
302 |
+
name: Cosine Recall@3
|
303 |
+
- type: cosine_recall@5
|
304 |
+
value: 1.0
|
305 |
+
name: Cosine Recall@5
|
306 |
+
- type: cosine_recall@10
|
307 |
+
value: 1.0
|
308 |
+
name: Cosine Recall@10
|
309 |
+
- type: cosine_ndcg@10
|
310 |
+
value: 0.9676432985325341
|
311 |
+
name: Cosine Ndcg@10
|
312 |
+
- type: cosine_mrr@10
|
313 |
+
value: 0.9562706270627063
|
314 |
+
name: Cosine Mrr@10
|
315 |
+
- type: cosine_map@100
|
316 |
+
value: 0.9562706270627064
|
317 |
+
name: Cosine Map@100
|
318 |
+
- task:
|
319 |
+
type: information-retrieval
|
320 |
+
name: Information Retrieval
|
321 |
+
dataset:
|
322 |
+
name: dim 128
|
323 |
+
type: dim_128
|
324 |
+
metrics:
|
325 |
+
- type: cosine_accuracy@1
|
326 |
+
value: 0.9158415841584159
|
327 |
+
name: Cosine Accuracy@1
|
328 |
+
- type: cosine_accuracy@3
|
329 |
+
value: 0.995049504950495
|
330 |
+
name: Cosine Accuracy@3
|
331 |
+
- type: cosine_accuracy@5
|
332 |
+
value: 1.0
|
333 |
+
name: Cosine Accuracy@5
|
334 |
+
- type: cosine_accuracy@10
|
335 |
+
value: 1.0
|
336 |
+
name: Cosine Accuracy@10
|
337 |
+
- type: cosine_precision@1
|
338 |
+
value: 0.9158415841584159
|
339 |
+
name: Cosine Precision@1
|
340 |
+
- type: cosine_precision@3
|
341 |
+
value: 0.3316831683168317
|
342 |
+
name: Cosine Precision@3
|
343 |
+
- type: cosine_precision@5
|
344 |
+
value: 0.19999999999999998
|
345 |
+
name: Cosine Precision@5
|
346 |
+
- type: cosine_precision@10
|
347 |
+
value: 0.09999999999999999
|
348 |
+
name: Cosine Precision@10
|
349 |
+
- type: cosine_recall@1
|
350 |
+
value: 0.9158415841584159
|
351 |
+
name: Cosine Recall@1
|
352 |
+
- type: cosine_recall@3
|
353 |
+
value: 0.995049504950495
|
354 |
+
name: Cosine Recall@3
|
355 |
+
- type: cosine_recall@5
|
356 |
+
value: 1.0
|
357 |
+
name: Cosine Recall@5
|
358 |
+
- type: cosine_recall@10
|
359 |
+
value: 1.0
|
360 |
+
name: Cosine Recall@10
|
361 |
+
- type: cosine_ndcg@10
|
362 |
+
value: 0.9677313310117717
|
363 |
+
name: Cosine Ndcg@10
|
364 |
+
- type: cosine_mrr@10
|
365 |
+
value: 0.9564356435643564
|
366 |
+
name: Cosine Mrr@10
|
367 |
+
- type: cosine_map@100
|
368 |
+
value: 0.9564356435643564
|
369 |
+
name: Cosine Map@100
|
370 |
+
- task:
|
371 |
+
type: information-retrieval
|
372 |
+
name: Information Retrieval
|
373 |
+
dataset:
|
374 |
+
name: dim 64
|
375 |
+
type: dim_64
|
376 |
+
metrics:
|
377 |
+
- type: cosine_accuracy@1
|
378 |
+
value: 0.900990099009901
|
379 |
+
name: Cosine Accuracy@1
|
380 |
+
- type: cosine_accuracy@3
|
381 |
+
value: 1.0
|
382 |
+
name: Cosine Accuracy@3
|
383 |
+
- type: cosine_accuracy@5
|
384 |
+
value: 1.0
|
385 |
+
name: Cosine Accuracy@5
|
386 |
+
- type: cosine_accuracy@10
|
387 |
+
value: 1.0
|
388 |
+
name: Cosine Accuracy@10
|
389 |
+
- type: cosine_precision@1
|
390 |
+
value: 0.900990099009901
|
391 |
+
name: Cosine Precision@1
|
392 |
+
- type: cosine_precision@3
|
393 |
+
value: 0.33333333333333337
|
394 |
+
name: Cosine Precision@3
|
395 |
+
- type: cosine_precision@5
|
396 |
+
value: 0.19999999999999998
|
397 |
+
name: Cosine Precision@5
|
398 |
+
- type: cosine_precision@10
|
399 |
+
value: 0.09999999999999999
|
400 |
+
name: Cosine Precision@10
|
401 |
+
- type: cosine_recall@1
|
402 |
+
value: 0.900990099009901
|
403 |
+
name: Cosine Recall@1
|
404 |
+
- type: cosine_recall@3
|
405 |
+
value: 1.0
|
406 |
+
name: Cosine Recall@3
|
407 |
+
- type: cosine_recall@5
|
408 |
+
value: 1.0
|
409 |
+
name: Cosine Recall@5
|
410 |
+
- type: cosine_recall@10
|
411 |
+
value: 1.0
|
412 |
+
name: Cosine Recall@10
|
413 |
+
- type: cosine_ndcg@10
|
414 |
+
value: 0.9621620572489419
|
415 |
+
name: Cosine Ndcg@10
|
416 |
+
- type: cosine_mrr@10
|
417 |
+
value: 0.9488448844884488
|
418 |
+
name: Cosine Mrr@10
|
419 |
+
- type: cosine_map@100
|
420 |
+
value: 0.948844884488449
|
421 |
+
name: Cosine Map@100
|
422 |
+
---
|
423 |
+
|
424 |
+
# BGE base Financial Matryoshka
|
425 |
+
|
426 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
427 |
+
|
428 |
+
## Model Details
|
429 |
+
|
430 |
+
### Model Description
|
431 |
+
- **Model Type:** Sentence Transformer
|
432 |
+
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
|
433 |
+
- **Maximum Sequence Length:** 512 tokens
|
434 |
+
- **Output Dimensionality:** 768 tokens
|
435 |
+
- **Similarity Function:** Cosine Similarity
|
436 |
+
<!-- - **Training Dataset:** Unknown -->
|
437 |
+
- **Language:** en
|
438 |
+
- **License:** apache-2.0
|
439 |
+
|
440 |
+
### Model Sources
|
441 |
+
|
442 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
443 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
444 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
445 |
+
|
446 |
+
### Full Model Architecture
|
447 |
+
|
448 |
+
```
|
449 |
+
SentenceTransformer(
|
450 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
451 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
452 |
+
(2): Normalize()
|
453 |
+
)
|
454 |
+
```
|
455 |
+
|
456 |
+
## Usage
|
457 |
+
|
458 |
+
### Direct Usage (Sentence Transformers)
|
459 |
+
|
460 |
+
First install the Sentence Transformers library:
|
461 |
+
|
462 |
+
```bash
|
463 |
+
pip install -U sentence-transformers
|
464 |
+
```
|
465 |
+
|
466 |
+
Then you can load this model and run inference.
|
467 |
+
```python
|
468 |
+
from sentence_transformers import SentenceTransformer
|
469 |
+
|
470 |
+
# Download from the 🤗 Hub
|
471 |
+
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka")
|
472 |
+
# Run inference
|
473 |
+
sentences = [
|
474 |
+
'Verbalized number or word (e.g. “lowest”, “low”, “medium”, “high”, “highest”), such as "Confidence: 60% / Medium".\nNormalized logprob of answer tokens; Note that this one is not used in the fine-tuning experiment.\nLogprob of an indirect "True/False" token after the raw answer.\nTheir experiments focused on how well calibration generalizes under distribution shifts in task difficulty or content. Each fine-tuning datapoint is a question, the model’s answer (possibly incorrect), and a calibrated confidence. Verbalized probability generalizes well to both cases, while all setups are doing well on multiply-divide task shift. Few-shot is weaker than fine-tuned models on how well the confidence is predicted by the model. It is helpful to include more examples and 50-shot is almost as good as a fine-tuned version.',
|
475 |
+
'In the context of few-shot learning, how do the confidence score calibrations compare to those of fine-tuned models, particularly when facing changes in data distribution',
|
476 |
+
'Considering the recent finding that larger models are more effective at minimizing hallucinations, how might this influence the development and refinement of techniques aimed at preventing hallucinations in AI systems',
|
477 |
+
]
|
478 |
+
embeddings = model.encode(sentences)
|
479 |
+
print(embeddings.shape)
|
480 |
+
# [3, 768]
|
481 |
+
|
482 |
+
# Get the similarity scores for the embeddings
|
483 |
+
similarities = model.similarity(embeddings, embeddings)
|
484 |
+
print(similarities.shape)
|
485 |
+
# [3, 3]
|
486 |
+
```
|
487 |
+
|
488 |
+
<!--
|
489 |
+
### Direct Usage (Transformers)
|
490 |
+
|
491 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
492 |
+
|
493 |
+
</details>
|
494 |
+
-->
|
495 |
+
|
496 |
+
<!--
|
497 |
+
### Downstream Usage (Sentence Transformers)
|
498 |
+
|
499 |
+
You can finetune this model on your own dataset.
|
500 |
+
|
501 |
+
<details><summary>Click to expand</summary>
|
502 |
+
|
503 |
+
</details>
|
504 |
+
-->
|
505 |
+
|
506 |
+
<!--
|
507 |
+
### Out-of-Scope Use
|
508 |
+
|
509 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
510 |
+
-->
|
511 |
+
|
512 |
+
## Evaluation
|
513 |
+
|
514 |
+
### Metrics
|
515 |
+
|
516 |
+
#### Information Retrieval
|
517 |
+
* Dataset: `dim_768`
|
518 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
519 |
+
|
520 |
+
| Metric | Value |
|
521 |
+
|:--------------------|:-----------|
|
522 |
+
| cosine_accuracy@1 | 0.9208 |
|
523 |
+
| cosine_accuracy@3 | 0.995 |
|
524 |
+
| cosine_accuracy@5 | 0.995 |
|
525 |
+
| cosine_accuracy@10 | 1.0 |
|
526 |
+
| cosine_precision@1 | 0.9208 |
|
527 |
+
| cosine_precision@3 | 0.3317 |
|
528 |
+
| cosine_precision@5 | 0.199 |
|
529 |
+
| cosine_precision@10 | 0.1 |
|
530 |
+
| cosine_recall@1 | 0.9208 |
|
531 |
+
| cosine_recall@3 | 0.995 |
|
532 |
+
| cosine_recall@5 | 0.995 |
|
533 |
+
| cosine_recall@10 | 1.0 |
|
534 |
+
| cosine_ndcg@10 | 0.9694 |
|
535 |
+
| cosine_mrr@10 | 0.9587 |
|
536 |
+
| **cosine_map@100** | **0.9587** |
|
537 |
+
|
538 |
+
#### Information Retrieval
|
539 |
+
* Dataset: `dim_512`
|
540 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
541 |
+
|
542 |
+
| Metric | Value |
|
543 |
+
|:--------------------|:-----------|
|
544 |
+
| cosine_accuracy@1 | 0.9257 |
|
545 |
+
| cosine_accuracy@3 | 0.995 |
|
546 |
+
| cosine_accuracy@5 | 1.0 |
|
547 |
+
| cosine_accuracy@10 | 1.0 |
|
548 |
+
| cosine_precision@1 | 0.9257 |
|
549 |
+
| cosine_precision@3 | 0.3317 |
|
550 |
+
| cosine_precision@5 | 0.2 |
|
551 |
+
| cosine_precision@10 | 0.1 |
|
552 |
+
| cosine_recall@1 | 0.9257 |
|
553 |
+
| cosine_recall@3 | 0.995 |
|
554 |
+
| cosine_recall@5 | 1.0 |
|
555 |
+
| cosine_recall@10 | 1.0 |
|
556 |
+
| cosine_ndcg@10 | 0.9716 |
|
557 |
+
| cosine_mrr@10 | 0.9616 |
|
558 |
+
| **cosine_map@100** | **0.9616** |
|
559 |
+
|
560 |
+
#### Information Retrieval
|
561 |
+
* Dataset: `dim_256`
|
562 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
563 |
+
|
564 |
+
| Metric | Value |
|
565 |
+
|:--------------------|:-----------|
|
566 |
+
| cosine_accuracy@1 | 0.9158 |
|
567 |
+
| cosine_accuracy@3 | 1.0 |
|
568 |
+
| cosine_accuracy@5 | 1.0 |
|
569 |
+
| cosine_accuracy@10 | 1.0 |
|
570 |
+
| cosine_precision@1 | 0.9158 |
|
571 |
+
| cosine_precision@3 | 0.3333 |
|
572 |
+
| cosine_precision@5 | 0.2 |
|
573 |
+
| cosine_precision@10 | 0.1 |
|
574 |
+
| cosine_recall@1 | 0.9158 |
|
575 |
+
| cosine_recall@3 | 1.0 |
|
576 |
+
| cosine_recall@5 | 1.0 |
|
577 |
+
| cosine_recall@10 | 1.0 |
|
578 |
+
| cosine_ndcg@10 | 0.9676 |
|
579 |
+
| cosine_mrr@10 | 0.9563 |
|
580 |
+
| **cosine_map@100** | **0.9563** |
|
581 |
+
|
582 |
+
#### Information Retrieval
|
583 |
+
* Dataset: `dim_128`
|
584 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
585 |
+
|
586 |
+
| Metric | Value |
|
587 |
+
|:--------------------|:-----------|
|
588 |
+
| cosine_accuracy@1 | 0.9158 |
|
589 |
+
| cosine_accuracy@3 | 0.995 |
|
590 |
+
| cosine_accuracy@5 | 1.0 |
|
591 |
+
| cosine_accuracy@10 | 1.0 |
|
592 |
+
| cosine_precision@1 | 0.9158 |
|
593 |
+
| cosine_precision@3 | 0.3317 |
|
594 |
+
| cosine_precision@5 | 0.2 |
|
595 |
+
| cosine_precision@10 | 0.1 |
|
596 |
+
| cosine_recall@1 | 0.9158 |
|
597 |
+
| cosine_recall@3 | 0.995 |
|
598 |
+
| cosine_recall@5 | 1.0 |
|
599 |
+
| cosine_recall@10 | 1.0 |
|
600 |
+
| cosine_ndcg@10 | 0.9677 |
|
601 |
+
| cosine_mrr@10 | 0.9564 |
|
602 |
+
| **cosine_map@100** | **0.9564** |
|
603 |
+
|
604 |
+
#### Information Retrieval
|
605 |
+
* Dataset: `dim_64`
|
606 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
607 |
+
|
608 |
+
| Metric | Value |
|
609 |
+
|:--------------------|:-----------|
|
610 |
+
| cosine_accuracy@1 | 0.901 |
|
611 |
+
| cosine_accuracy@3 | 1.0 |
|
612 |
+
| cosine_accuracy@5 | 1.0 |
|
613 |
+
| cosine_accuracy@10 | 1.0 |
|
614 |
+
| cosine_precision@1 | 0.901 |
|
615 |
+
| cosine_precision@3 | 0.3333 |
|
616 |
+
| cosine_precision@5 | 0.2 |
|
617 |
+
| cosine_precision@10 | 0.1 |
|
618 |
+
| cosine_recall@1 | 0.901 |
|
619 |
+
| cosine_recall@3 | 1.0 |
|
620 |
+
| cosine_recall@5 | 1.0 |
|
621 |
+
| cosine_recall@10 | 1.0 |
|
622 |
+
| cosine_ndcg@10 | 0.9622 |
|
623 |
+
| cosine_mrr@10 | 0.9488 |
|
624 |
+
| **cosine_map@100** | **0.9488** |
|
625 |
+
|
626 |
+
<!--
|
627 |
+
## Bias, Risks and Limitations
|
628 |
+
|
629 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
630 |
+
-->
|
631 |
+
|
632 |
+
<!--
|
633 |
+
### Recommendations
|
634 |
+
|
635 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
636 |
+
-->
|
637 |
+
|
638 |
+
## Training Details
|
639 |
+
|
640 |
+
### Training Hyperparameters
|
641 |
+
#### Non-Default Hyperparameters
|
642 |
+
|
643 |
+
- `eval_strategy`: epoch
|
644 |
+
- `per_device_eval_batch_size`: 16
|
645 |
+
- `learning_rate`: 2e-05
|
646 |
+
- `num_train_epochs`: 5
|
647 |
+
- `lr_scheduler_type`: cosine
|
648 |
+
- `warmup_ratio`: 0.1
|
649 |
+
- `load_best_model_at_end`: True
|
650 |
+
|
651 |
+
#### All Hyperparameters
|
652 |
+
<details><summary>Click to expand</summary>
|
653 |
+
|
654 |
+
- `overwrite_output_dir`: False
|
655 |
+
- `do_predict`: False
|
656 |
+
- `eval_strategy`: epoch
|
657 |
+
- `prediction_loss_only`: True
|
658 |
+
- `per_device_train_batch_size`: 8
|
659 |
+
- `per_device_eval_batch_size`: 16
|
660 |
+
- `per_gpu_train_batch_size`: None
|
661 |
+
- `per_gpu_eval_batch_size`: None
|
662 |
+
- `gradient_accumulation_steps`: 1
|
663 |
+
- `eval_accumulation_steps`: None
|
664 |
+
- `learning_rate`: 2e-05
|
665 |
+
- `weight_decay`: 0.0
|
666 |
+
- `adam_beta1`: 0.9
|
667 |
+
- `adam_beta2`: 0.999
|
668 |
+
- `adam_epsilon`: 1e-08
|
669 |
+
- `max_grad_norm`: 1.0
|
670 |
+
- `num_train_epochs`: 5
|
671 |
+
- `max_steps`: -1
|
672 |
+
- `lr_scheduler_type`: cosine
|
673 |
+
- `lr_scheduler_kwargs`: {}
|
674 |
+
- `warmup_ratio`: 0.1
|
675 |
+
- `warmup_steps`: 0
|
676 |
+
- `log_level`: passive
|
677 |
+
- `log_level_replica`: warning
|
678 |
+
- `log_on_each_node`: True
|
679 |
+
- `logging_nan_inf_filter`: True
|
680 |
+
- `save_safetensors`: True
|
681 |
+
- `save_on_each_node`: False
|
682 |
+
- `save_only_model`: False
|
683 |
+
- `restore_callback_states_from_checkpoint`: False
|
684 |
+
- `no_cuda`: False
|
685 |
+
- `use_cpu`: False
|
686 |
+
- `use_mps_device`: False
|
687 |
+
- `seed`: 42
|
688 |
+
- `data_seed`: None
|
689 |
+
- `jit_mode_eval`: False
|
690 |
+
- `use_ipex`: False
|
691 |
+
- `bf16`: False
|
692 |
+
- `fp16`: False
|
693 |
+
- `fp16_opt_level`: O1
|
694 |
+
- `half_precision_backend`: auto
|
695 |
+
- `bf16_full_eval`: False
|
696 |
+
- `fp16_full_eval`: False
|
697 |
+
- `tf32`: None
|
698 |
+
- `local_rank`: 0
|
699 |
+
- `ddp_backend`: None
|
700 |
+
- `tpu_num_cores`: None
|
701 |
+
- `tpu_metrics_debug`: False
|
702 |
+
- `debug`: []
|
703 |
+
- `dataloader_drop_last`: False
|
704 |
+
- `dataloader_num_workers`: 0
|
705 |
+
- `dataloader_prefetch_factor`: None
|
706 |
+
- `past_index`: -1
|
707 |
+
- `disable_tqdm`: False
|
708 |
+
- `remove_unused_columns`: True
|
709 |
+
- `label_names`: None
|
710 |
+
- `load_best_model_at_end`: True
|
711 |
+
- `ignore_data_skip`: False
|
712 |
+
- `fsdp`: []
|
713 |
+
- `fsdp_min_num_params`: 0
|
714 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
715 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
716 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
717 |
+
- `deepspeed`: None
|
718 |
+
- `label_smoothing_factor`: 0.0
|
719 |
+
- `optim`: adamw_torch
|
720 |
+
- `optim_args`: None
|
721 |
+
- `adafactor`: False
|
722 |
+
- `group_by_length`: False
|
723 |
+
- `length_column_name`: length
|
724 |
+
- `ddp_find_unused_parameters`: None
|
725 |
+
- `ddp_bucket_cap_mb`: None
|
726 |
+
- `ddp_broadcast_buffers`: False
|
727 |
+
- `dataloader_pin_memory`: True
|
728 |
+
- `dataloader_persistent_workers`: False
|
729 |
+
- `skip_memory_metrics`: True
|
730 |
+
- `use_legacy_prediction_loop`: False
|
731 |
+
- `push_to_hub`: False
|
732 |
+
- `resume_from_checkpoint`: None
|
733 |
+
- `hub_model_id`: None
|
734 |
+
- `hub_strategy`: every_save
|
735 |
+
- `hub_private_repo`: False
|
736 |
+
- `hub_always_push`: False
|
737 |
+
- `gradient_checkpointing`: False
|
738 |
+
- `gradient_checkpointing_kwargs`: None
|
739 |
+
- `include_inputs_for_metrics`: False
|
740 |
+
- `eval_do_concat_batches`: True
|
741 |
+
- `fp16_backend`: auto
|
742 |
+
- `push_to_hub_model_id`: None
|
743 |
+
- `push_to_hub_organization`: None
|
744 |
+
- `mp_parameters`:
|
745 |
+
- `auto_find_batch_size`: False
|
746 |
+
- `full_determinism`: False
|
747 |
+
- `torchdynamo`: None
|
748 |
+
- `ray_scope`: last
|
749 |
+
- `ddp_timeout`: 1800
|
750 |
+
- `torch_compile`: False
|
751 |
+
- `torch_compile_backend`: None
|
752 |
+
- `torch_compile_mode`: None
|
753 |
+
- `dispatch_batches`: None
|
754 |
+
- `split_batches`: None
|
755 |
+
- `include_tokens_per_second`: False
|
756 |
+
- `include_num_input_tokens_seen`: False
|
757 |
+
- `neftune_noise_alpha`: None
|
758 |
+
- `optim_target_modules`: None
|
759 |
+
- `batch_eval_metrics`: False
|
760 |
+
- `eval_on_start`: False
|
761 |
+
- `batch_sampler`: batch_sampler
|
762 |
+
- `multi_dataset_batch_sampler`: proportional
|
763 |
+
|
764 |
+
</details>
|
765 |
+
|
766 |
+
### Training Logs
|
767 |
+
<details><summary>Click to expand</summary>
|
768 |
+
|
769 |
+
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|
770 |
+
|:-------:|:--------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
|
771 |
+
| 0.0220 | 5 | 6.6173 | - | - | - | - | - |
|
772 |
+
| 0.0441 | 10 | 5.5321 | - | - | - | - | - |
|
773 |
+
| 0.0661 | 15 | 5.656 | - | - | - | - | - |
|
774 |
+
| 0.0881 | 20 | 4.9256 | - | - | - | - | - |
|
775 |
+
| 0.1101 | 25 | 5.0757 | - | - | - | - | - |
|
776 |
+
| 0.1322 | 30 | 5.2047 | - | - | - | - | - |
|
777 |
+
| 0.1542 | 35 | 5.1307 | - | - | - | - | - |
|
778 |
+
| 0.1762 | 40 | 4.9219 | - | - | - | - | - |
|
779 |
+
| 0.1982 | 45 | 5.1957 | - | - | - | - | - |
|
780 |
+
| 0.2203 | 50 | 5.36 | - | - | - | - | - |
|
781 |
+
| 0.2423 | 55 | 3.0865 | - | - | - | - | - |
|
782 |
+
| 0.2643 | 60 | 3.7054 | - | - | - | - | - |
|
783 |
+
| 0.2863 | 65 | 2.9541 | - | - | - | - | - |
|
784 |
+
| 0.3084 | 70 | 3.5521 | - | - | - | - | - |
|
785 |
+
| 0.3304 | 75 | 3.5665 | - | - | - | - | - |
|
786 |
+
| 0.3524 | 80 | 2.9532 | - | - | - | - | - |
|
787 |
+
| 0.3744 | 85 | 2.5121 | - | - | - | - | - |
|
788 |
+
| 0.3965 | 90 | 3.1269 | - | - | - | - | - |
|
789 |
+
| 0.4185 | 95 | 3.4048 | - | - | - | - | - |
|
790 |
+
| 0.4405 | 100 | 2.8126 | - | - | - | - | - |
|
791 |
+
| 0.4626 | 105 | 1.6847 | - | - | - | - | - |
|
792 |
+
| 0.4846 | 110 | 1.3331 | - | - | - | - | - |
|
793 |
+
| 0.5066 | 115 | 2.4799 | - | - | - | - | - |
|
794 |
+
| 0.5286 | 120 | 2.1176 | - | - | - | - | - |
|
795 |
+
| 0.5507 | 125 | 2.4249 | - | - | - | - | - |
|
796 |
+
| 0.5727 | 130 | 3.3705 | - | - | - | - | - |
|
797 |
+
| 0.5947 | 135 | 1.551 | - | - | - | - | - |
|
798 |
+
| 0.6167 | 140 | 1.328 | - | - | - | - | - |
|
799 |
+
| 0.6388 | 145 | 1.9353 | - | - | - | - | - |
|
800 |
+
| 0.6608 | 150 | 2.4254 | - | - | - | - | - |
|
801 |
+
| 0.6828 | 155 | 1.8436 | - | - | - | - | - |
|
802 |
+
| 0.7048 | 160 | 1.1937 | - | - | - | - | - |
|
803 |
+
| 0.7269 | 165 | 2.164 | - | - | - | - | - |
|
804 |
+
| 0.7489 | 170 | 2.2921 | - | - | - | - | - |
|
805 |
+
| 0.7709 | 175 | 2.4385 | - | - | - | - | - |
|
806 |
+
| 0.7930 | 180 | 1.2392 | - | - | - | - | - |
|
807 |
+
| 0.8150 | 185 | 1.0472 | - | - | - | - | - |
|
808 |
+
| 0.8370 | 190 | 1.5844 | - | - | - | - | - |
|
809 |
+
| 0.8590 | 195 | 1.2492 | - | - | - | - | - |
|
810 |
+
| 0.8811 | 200 | 1.6774 | - | - | - | - | - |
|
811 |
+
| 0.9031 | 205 | 2.485 | - | - | - | - | - |
|
812 |
+
| 0.9251 | 210 | 2.4781 | - | - | - | - | - |
|
813 |
+
| 0.9471 | 215 | 2.4476 | - | - | - | - | - |
|
814 |
+
| 0.9692 | 220 | 2.6243 | - | - | - | - | - |
|
815 |
+
| 0.9912 | 225 | 1.3651 | - | - | - | - | - |
|
816 |
+
| 1.0 | 227 | - | 0.9066 | 0.9112 | 0.9257 | 0.8906 | 0.9182 |
|
817 |
+
| 1.0132 | 230 | 1.0575 | - | - | - | - | - |
|
818 |
+
| 1.0352 | 235 | 1.4499 | - | - | - | - | - |
|
819 |
+
| 1.0573 | 240 | 1.4333 | - | - | - | - | - |
|
820 |
+
| 1.0793 | 245 | 1.1148 | - | - | - | - | - |
|
821 |
+
| 1.1013 | 250 | 1.259 | - | - | - | - | - |
|
822 |
+
| 1.1233 | 255 | 0.873 | - | - | - | - | - |
|
823 |
+
| 1.1454 | 260 | 1.646 | - | - | - | - | - |
|
824 |
+
| 1.1674 | 265 | 1.7583 | - | - | - | - | - |
|
825 |
+
| 1.1894 | 270 | 1.2268 | - | - | - | - | - |
|
826 |
+
| 1.2115 | 275 | 1.3792 | - | - | - | - | - |
|
827 |
+
| 1.2335 | 280 | 2.5662 | - | - | - | - | - |
|
828 |
+
| 1.2555 | 285 | 1.5021 | - | - | - | - | - |
|
829 |
+
| 1.2775 | 290 | 1.1399 | - | - | - | - | - |
|
830 |
+
| 1.2996 | 295 | 1.3307 | - | - | - | - | - |
|
831 |
+
| 1.3216 | 300 | 0.7458 | - | - | - | - | - |
|
832 |
+
| 1.3436 | 305 | 1.1029 | - | - | - | - | - |
|
833 |
+
| 1.3656 | 310 | 1.0205 | - | - | - | - | - |
|
834 |
+
| 1.3877 | 315 | 1.0998 | - | - | - | - | - |
|
835 |
+
| 1.4097 | 320 | 0.8304 | - | - | - | - | - |
|
836 |
+
| 1.4317 | 325 | 1.3673 | - | - | - | - | - |
|
837 |
+
| 1.4537 | 330 | 2.4445 | - | - | - | - | - |
|
838 |
+
| 1.4758 | 335 | 2.8757 | - | - | - | - | - |
|
839 |
+
| 1.4978 | 340 | 1.7879 | - | - | - | - | - |
|
840 |
+
| 1.5198 | 345 | 1.1255 | - | - | - | - | - |
|
841 |
+
| 1.5419 | 350 | 1.6743 | - | - | - | - | - |
|
842 |
+
| 1.5639 | 355 | 1.3803 | - | - | - | - | - |
|
843 |
+
| 1.5859 | 360 | 1.1998 | - | - | - | - | - |
|
844 |
+
| 1.6079 | 365 | 1.2129 | - | - | - | - | - |
|
845 |
+
| 1.6300 | 370 | 1.6588 | - | - | - | - | - |
|
846 |
+
| 1.6520 | 375 | 0.9827 | - | - | - | - | - |
|
847 |
+
| 1.6740 | 380 | 0.605 | - | - | - | - | - |
|
848 |
+
| 1.6960 | 385 | 1.2934 | - | - | - | - | - |
|
849 |
+
| 1.7181 | 390 | 1.1776 | - | - | - | - | - |
|
850 |
+
| 1.7401 | 395 | 1.445 | - | - | - | - | - |
|
851 |
+
| 1.7621 | 400 | 0.6393 | - | - | - | - | - |
|
852 |
+
| 1.7841 | 405 | 0.9303 | - | - | - | - | - |
|
853 |
+
| 1.8062 | 410 | 0.7541 | - | - | - | - | - |
|
854 |
+
| 1.8282 | 415 | 0.5413 | - | - | - | - | - |
|
855 |
+
| 1.8502 | 420 | 1.5258 | - | - | - | - | - |
|
856 |
+
| 1.8722 | 425 | 1.4257 | - | - | - | - | - |
|
857 |
+
| 1.8943 | 430 | 1.3111 | - | - | - | - | - |
|
858 |
+
| 1.9163 | 435 | 1.6604 | - | - | - | - | - |
|
859 |
+
| 1.9383 | 440 | 1.4004 | - | - | - | - | - |
|
860 |
+
| 1.9604 | 445 | 2.7186 | - | - | - | - | - |
|
861 |
+
| 1.9824 | 450 | 2.2757 | - | - | - | - | - |
|
862 |
+
| 2.0 | 454 | - | 0.9401 | 0.9433 | 0.9387 | 0.9386 | 0.9416 |
|
863 |
+
| 2.0044 | 455 | 0.9345 | - | - | - | - | - |
|
864 |
+
| 2.0264 | 460 | 0.9325 | - | - | - | - | - |
|
865 |
+
| 2.0485 | 465 | 1.2434 | - | - | - | - | - |
|
866 |
+
| 2.0705 | 470 | 1.5161 | - | - | - | - | - |
|
867 |
+
| 2.0925 | 475 | 2.6011 | - | - | - | - | - |
|
868 |
+
| 2.1145 | 480 | 1.8276 | - | - | - | - | - |
|
869 |
+
| 2.1366 | 485 | 1.5005 | - | - | - | - | - |
|
870 |
+
| 2.1586 | 490 | 0.8618 | - | - | - | - | - |
|
871 |
+
| 2.1806 | 495 | 2.1422 | - | - | - | - | - |
|
872 |
+
| 2.2026 | 500 | 1.3922 | - | - | - | - | - |
|
873 |
+
| 2.2247 | 505 | 1.5939 | - | - | - | - | - |
|
874 |
+
| 2.2467 | 510 | 1.3021 | - | - | - | - | - |
|
875 |
+
| 2.2687 | 515 | 1.0825 | - | - | - | - | - |
|
876 |
+
| 2.2907 | 520 | 0.9066 | - | - | - | - | - |
|
877 |
+
| 2.3128 | 525 | 0.7717 | - | - | - | - | - |
|
878 |
+
| 2.3348 | 530 | 1.1484 | - | - | - | - | - |
|
879 |
+
| 2.3568 | 535 | 1.6513 | - | - | - | - | - |
|
880 |
+
| 2.3789 | 540 | 1.7267 | - | - | - | - | - |
|
881 |
+
| 2.4009 | 545 | 0.7659 | - | - | - | - | - |
|
882 |
+
| 2.4229 | 550 | 2.0213 | - | - | - | - | - |
|
883 |
+
| 2.4449 | 555 | 0.5329 | - | - | - | - | - |
|
884 |
+
| 2.4670 | 560 | 1.2083 | - | - | - | - | - |
|
885 |
+
| 2.4890 | 565 | 1.5432 | - | - | - | - | - |
|
886 |
+
| 2.5110 | 570 | 0.5423 | - | - | - | - | - |
|
887 |
+
| 2.5330 | 575 | 0.2613 | - | - | - | - | - |
|
888 |
+
| 2.5551 | 580 | 0.7985 | - | - | - | - | - |
|
889 |
+
| 2.5771 | 585 | 0.3003 | - | - | - | - | - |
|
890 |
+
| 2.5991 | 590 | 2.2234 | - | - | - | - | - |
|
891 |
+
| 2.6211 | 595 | 0.4772 | - | - | - | - | - |
|
892 |
+
| 2.6432 | 600 | 1.0158 | - | - | - | - | - |
|
893 |
+
| 2.6652 | 605 | 2.6385 | - | - | - | - | - |
|
894 |
+
| 2.6872 | 610 | 0.7042 | - | - | - | - | - |
|
895 |
+
| 2.7093 | 615 | 1.1469 | - | - | - | - | - |
|
896 |
+
| 2.7313 | 620 | 1.4092 | - | - | - | - | - |
|
897 |
+
| 2.7533 | 625 | 0.6487 | - | - | - | - | - |
|
898 |
+
| 2.7753 | 630 | 1.218 | - | - | - | - | - |
|
899 |
+
| 2.7974 | 635 | 1.1509 | - | - | - | - | - |
|
900 |
+
| 2.8194 | 640 | 1.1524 | - | - | - | - | - |
|
901 |
+
| 2.8414 | 645 | 0.6477 | - | - | - | - | - |
|
902 |
+
| 2.8634 | 650 | 0.6295 | - | - | - | - | - |
|
903 |
+
| 2.8855 | 655 | 1.3026 | - | - | - | - | - |
|
904 |
+
| 2.9075 | 660 | 1.9196 | - | - | - | - | - |
|
905 |
+
| 2.9295 | 665 | 1.3743 | - | - | - | - | - |
|
906 |
+
| 2.9515 | 670 | 0.8934 | - | - | - | - | - |
|
907 |
+
| 2.9736 | 675 | 1.1801 | - | - | - | - | - |
|
908 |
+
| 2.9956 | 680 | 1.2952 | - | - | - | - | - |
|
909 |
+
| 3.0 | 681 | - | 0.9538 | 0.9513 | 0.9538 | 0.9414 | 0.9435 |
|
910 |
+
| 3.0176 | 685 | 0.3324 | - | - | - | - | - |
|
911 |
+
| 3.0396 | 690 | 0.9551 | - | - | - | - | - |
|
912 |
+
| 3.0617 | 695 | 0.9315 | - | - | - | - | - |
|
913 |
+
| 3.0837 | 700 | 1.3611 | - | - | - | - | - |
|
914 |
+
| 3.1057 | 705 | 1.4406 | - | - | - | - | - |
|
915 |
+
| 3.1278 | 710 | 0.5888 | - | - | - | - | - |
|
916 |
+
| 3.1498 | 715 | 0.9149 | - | - | - | - | - |
|
917 |
+
| 3.1718 | 720 | 0.5627 | - | - | - | - | - |
|
918 |
+
| 3.1938 | 725 | 1.6876 | - | - | - | - | - |
|
919 |
+
| 3.2159 | 730 | 1.1366 | - | - | - | - | - |
|
920 |
+
| 3.2379 | 735 | 1.3571 | - | - | - | - | - |
|
921 |
+
| 3.2599 | 740 | 1.5227 | - | - | - | - | - |
|
922 |
+
| 3.2819 | 745 | 2.5139 | - | - | - | - | - |
|
923 |
+
| 3.3040 | 750 | 0.3735 | - | - | - | - | - |
|
924 |
+
| 3.3260 | 755 | 1.4386 | - | - | - | - | - |
|
925 |
+
| 3.3480 | 760 | 0.3838 | - | - | - | - | - |
|
926 |
+
| 3.3700 | 765 | 0.3973 | - | - | - | - | - |
|
927 |
+
| 3.3921 | 770 | 1.4972 | - | - | - | - | - |
|
928 |
+
| 3.4141 | 775 | 1.5118 | - | - | - | - | - |
|
929 |
+
| 3.4361 | 780 | 0.478 | - | - | - | - | - |
|
930 |
+
| 3.4581 | 785 | 1.5982 | - | - | - | - | - |
|
931 |
+
| 3.4802 | 790 | 0.6209 | - | - | - | - | - |
|
932 |
+
| 3.5022 | 795 | 0.5902 | - | - | - | - | - |
|
933 |
+
| 3.5242 | 800 | 1.0877 | - | - | - | - | - |
|
934 |
+
| 3.5463 | 805 | 0.9553 | - | - | - | - | - |
|
935 |
+
| 3.5683 | 810 | 0.3054 | - | - | - | - | - |
|
936 |
+
| 3.5903 | 815 | 1.2229 | - | - | - | - | - |
|
937 |
+
| 3.6123 | 820 | 0.7434 | - | - | - | - | - |
|
938 |
+
| 3.6344 | 825 | 1.5447 | - | - | - | - | - |
|
939 |
+
| 3.6564 | 830 | 1.0751 | - | - | - | - | - |
|
940 |
+
| 3.6784 | 835 | 0.8161 | - | - | - | - | - |
|
941 |
+
| 3.7004 | 840 | 0.4382 | - | - | - | - | - |
|
942 |
+
| 3.7225 | 845 | 1.3547 | - | - | - | - | - |
|
943 |
+
| 3.7445 | 850 | 1.7112 | - | - | - | - | - |
|
944 |
+
| 3.7665 | 855 | 0.5362 | - | - | - | - | - |
|
945 |
+
| 3.7885 | 860 | 0.9309 | - | - | - | - | - |
|
946 |
+
| 3.8106 | 865 | 1.8301 | - | - | - | - | - |
|
947 |
+
| 3.8326 | 870 | 1.5554 | - | - | - | - | - |
|
948 |
+
| 3.8546 | 875 | 1.4035 | - | - | - | - | - |
|
949 |
+
| 3.8767 | 880 | 1.5814 | - | - | - | - | - |
|
950 |
+
| 3.8987 | 885 | 0.7283 | - | - | - | - | - |
|
951 |
+
| 3.9207 | 890 | 1.8549 | - | - | - | - | - |
|
952 |
+
| 3.9427 | 895 | 0.196 | - | - | - | - | - |
|
953 |
+
| 3.9648 | 900 | 1.2072 | - | - | - | - | - |
|
954 |
+
| 3.9868 | 905 | 0.83 | - | - | - | - | - |
|
955 |
+
| 4.0 | 908 | - | 0.9564 | 0.9587 | 0.9612 | 0.9488 | 0.9563 |
|
956 |
+
| 4.0088 | 910 | 1.7222 | - | - | - | - | - |
|
957 |
+
| 4.0308 | 915 | 0.6728 | - | - | - | - | - |
|
958 |
+
| 4.0529 | 920 | 0.9388 | - | - | - | - | - |
|
959 |
+
| 4.0749 | 925 | 0.7998 | - | - | - | - | - |
|
960 |
+
| 4.0969 | 930 | 1.1561 | - | - | - | - | - |
|
961 |
+
| 4.1189 | 935 | 2.4315 | - | - | - | - | - |
|
962 |
+
| 4.1410 | 940 | 1.3263 | - | - | - | - | - |
|
963 |
+
| 4.1630 | 945 | 1.2374 | - | - | - | - | - |
|
964 |
+
| 4.1850 | 950 | 1.1307 | - | - | - | - | - |
|
965 |
+
| 4.2070 | 955 | 0.5512 | - | - | - | - | - |
|
966 |
+
| 4.2291 | 960 | 1.3266 | - | - | - | - | - |
|
967 |
+
| 4.2511 | 965 | 1.2306 | - | - | - | - | - |
|
968 |
+
| 4.2731 | 970 | 1.7083 | - | - | - | - | - |
|
969 |
+
| 4.2952 | 975 | 0.7028 | - | - | - | - | - |
|
970 |
+
| 4.3172 | 980 | 1.2987 | - | - | - | - | - |
|
971 |
+
| 4.3392 | 985 | 1.545 | - | - | - | - | - |
|
972 |
+
| 4.3612 | 990 | 1.004 | - | - | - | - | - |
|
973 |
+
| 4.3833 | 995 | 0.8276 | - | - | - | - | - |
|
974 |
+
| 4.4053 | 1000 | 1.4694 | - | - | - | - | - |
|
975 |
+
| 4.4273 | 1005 | 0.4914 | - | - | - | - | - |
|
976 |
+
| 4.4493 | 1010 | 0.9894 | - | - | - | - | - |
|
977 |
+
| 4.4714 | 1015 | 0.8855 | - | - | - | - | - |
|
978 |
+
| 4.4934 | 1020 | 1.1339 | - | - | - | - | - |
|
979 |
+
| 4.5154 | 1025 | 1.0786 | - | - | - | - | - |
|
980 |
+
| 4.5374 | 1030 | 1.2547 | - | - | - | - | - |
|
981 |
+
| 4.5595 | 1035 | 0.5312 | - | - | - | - | - |
|
982 |
+
| 4.5815 | 1040 | 1.4938 | - | - | - | - | - |
|
983 |
+
| 4.6035 | 1045 | 0.8124 | - | - | - | - | - |
|
984 |
+
| 4.6256 | 1050 | 1.2401 | - | - | - | - | - |
|
985 |
+
| 4.6476 | 1055 | 1.1902 | - | - | - | - | - |
|
986 |
+
| 4.6696 | 1060 | 1.4183 | - | - | - | - | - |
|
987 |
+
| 4.6916 | 1065 | 1.0718 | - | - | - | - | - |
|
988 |
+
| 4.7137 | 1070 | 1.2203 | - | - | - | - | - |
|
989 |
+
| 4.7357 | 1075 | 0.8535 | - | - | - | - | - |
|
990 |
+
| 4.7577 | 1080 | 1.2454 | - | - | - | - | - |
|
991 |
+
| 4.7797 | 1085 | 0.4216 | - | - | - | - | - |
|
992 |
+
| 4.8018 | 1090 | 0.8327 | - | - | - | - | - |
|
993 |
+
| 4.8238 | 1095 | 1.2371 | - | - | - | - | - |
|
994 |
+
| 4.8458 | 1100 | 1.0949 | - | - | - | - | - |
|
995 |
+
| 4.8678 | 1105 | 1.2177 | - | - | - | - | - |
|
996 |
+
| 4.8899 | 1110 | 0.6236 | - | - | - | - | - |
|
997 |
+
| 4.9119 | 1115 | 0.646 | - | - | - | - | - |
|
998 |
+
| 4.9339 | 1120 | 1.1822 | - | - | - | - | - |
|
999 |
+
| 4.9559 | 1125 | 1.0471 | - | - | - | - | - |
|
1000 |
+
| 4.9780 | 1130 | 0.7626 | - | - | - | - | - |
|
1001 |
+
| **5.0** | **1135** | **0.9794** | **0.9564** | **0.9563** | **0.9616** | **0.9488** | **0.9587** |
|
1002 |
+
|
1003 |
+
* The bold row denotes the saved checkpoint.
|
1004 |
+
</details>
|
1005 |
+
|
1006 |
+
### Framework Versions
|
1007 |
+
- Python: 3.10.12
|
1008 |
+
- Sentence Transformers: 3.0.1
|
1009 |
+
- Transformers: 4.42.4
|
1010 |
+
- PyTorch: 2.3.1+cu121
|
1011 |
+
- Accelerate: 0.32.1
|
1012 |
+
- Datasets: 2.21.0
|
1013 |
+
- Tokenizers: 0.19.1
|
1014 |
+
|
1015 |
+
## Citation
|
1016 |
+
|
1017 |
+
### BibTeX
|
1018 |
+
|
1019 |
+
#### Sentence Transformers
|
1020 |
+
```bibtex
|
1021 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1022 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1023 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1024 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1025 |
+
month = "11",
|
1026 |
+
year = "2019",
|
1027 |
+
publisher = "Association for Computational Linguistics",
|
1028 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1029 |
+
}
|
1030 |
+
```
|
1031 |
+
|
1032 |
+
#### MatryoshkaLoss
|
1033 |
+
```bibtex
|
1034 |
+
@misc{kusupati2024matryoshka,
|
1035 |
+
title={Matryoshka Representation Learning},
|
1036 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
1037 |
+
year={2024},
|
1038 |
+
eprint={2205.13147},
|
1039 |
+
archivePrefix={arXiv},
|
1040 |
+
primaryClass={cs.LG}
|
1041 |
+
}
|
1042 |
+
```
|
1043 |
+
|
1044 |
+
#### MultipleNegativesRankingLoss
|
1045 |
+
```bibtex
|
1046 |
+
@misc{henderson2017efficient,
|
1047 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
1048 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
1049 |
+
year={2017},
|
1050 |
+
eprint={1705.00652},
|
1051 |
+
archivePrefix={arXiv},
|
1052 |
+
primaryClass={cs.CL}
|
1053 |
+
}
|
1054 |
+
```
|
1055 |
+
|
1056 |
+
<!--
|
1057 |
+
## Glossary
|
1058 |
+
|
1059 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1060 |
+
-->
|
1061 |
+
|
1062 |
+
<!--
|
1063 |
+
## Model Card Authors
|
1064 |
+
|
1065 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1066 |
+
-->
|
1067 |
+
|
1068 |
+
<!--
|
1069 |
+
## Model Card Contact
|
1070 |
+
|
1071 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1072 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "fine-tuned-matryoshka",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.42.4",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.42.4",
|
5 |
+
"pytorch": "2.3.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ebe66a62d30ee433880ae344e1dfd636bd6bb1de801de5df99168dbc62217db
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|