File size: 56,492 Bytes
3519726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
"""

This code is in part adapted from AllenAI's Longformer:
    https://github.com/allenai/longformer/
and in part adapted from:
    https://github.com/huggingface/transformers

Author: Annette Rios (rios@cl.uzh.ch)

"""
from typing import List, Optional, Tuple, Dict, Union
from torch import nn, Tensor, zeros
import torch
import math
import random
from transformers.models.mbart.modeling_mbart import MBartConfig, MBartForConditionalGeneration, MBartEncoder, MBartLearnedPositionalEmbedding, MBartEncoderLayer, MBartDecoder, MBartModel, _expand_mask
from transformers.modeling_outputs import BaseModelOutput,Seq2SeqModelOutput
from transformers.configuration_utils import PretrainedConfig
from transformers import GPT2Model, GPT2Config, AutoModelForCausalLM,AutoConfig
from transformers.activations import ACT2FN

import torch.nn.functional as F
from transformers.models.roberta.modeling_roberta import RobertaConfig, RobertaModel, RobertaForMaskedLM

from functools import lru_cache
import os.path


class MLongformerEncoderDecoderForConditionalGenerationCustom(MBartForConditionalGeneration):
    def __init__(self, config):
        super(MBartForConditionalGeneration, self).__init__(config)
        self.decoder_config = GPT2Config.from_dict(config.decoder_config)
        self.decoder_config.add_cross_attention=True
        self.config.eos_token_id = self.decoder_config.eos_token_id
        #self.config.bos_token_id = 0

        self.model = LongMBartModelCustom(config)
        #self.register_buffer("final_logits_bias", torch.zeros((1, self.decoder_config.vocab_size)))

        if self.config.from_mbart:
            self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
            self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
        else:
            self.lm_head = nn.Linear(self.decoder_config.n_embd, self.decoder_config.vocab_size, bias=False)
            self.register_buffer("final_logits_bias", torch.zeros((1, self.decoder_config.vocab_size)))

        self.model.decoder = GPT2Model(self.decoder_config)
        if config.attention_mode == 'n2':
            pass  # do nothing, use MBartSelfAttention instead
        else:
            for i, layer in enumerate(self.model.encoder.layers):
                layer.self_attn = LongformerSelfAttentionForMBart(config, layer_id=i)
        # Initialize weights and apply final processing
        self.post_init()

    def post_init(self):
        super().post_init()
        if not self.config.from_mbart:
            self.lm_head = nn.Linear(self.decoder_config.n_embd, self.decoder_config.vocab_size, bias=False)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (MBartDecoder)):
            module.gradient_checkpointing = value
        self.model.decoder._set_gradient_checkpointing(module, value=value)

    @classmethod
    def from_encoder_decoder_pretrained(
        cls,
        mbart_pretrained_model_name_or_path: str = None,
        decoder_pretrained_model_name_or_path: str = None,
        *model_args,
        **kwargs
    ) -> MBartForConditionalGeneration:
        config = MLongformerEncoderDecoderConfigCustom.from_pretrained(mbart_pretrained_model_name_or_path)
        config.from_mbart = True
        config.tie_word_embeddings = False
        config.decoder_config = GPT2Config.from_pretrained(decoder_pretrained_model_name_or_path).to_dict()

        mbart = super().from_pretrained(mbart_pretrained_model_name_or_path, config=config)
        decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, add_cross_attention=True)

        mbart.model.decoder = decoder.transformer
        mbart.lm_head = decoder.lm_head
        mbart.register_buffer("final_logits_bias", torch.zeros((1, decoder.config.vocab_size)))

        #reinit cross attention layers
        mbart.model.enc_to_dec_proj.apply(mbart.model._init_weights)
        for layer in mbart.model.decoder.h:
            layer.crossattention.c_attn.apply(mbart.model.decoder._init_weights)

        del mbart.model.shared
        return mbart


class MLongformerEncoderDecoderConfigCustom(MBartConfig):
    def __init__(self, attention_window: List[int] = None, attention_dilation: List[int] = None,
                 autoregressive: bool = False, attention_mode: str = 'sliding_chunks',
                 gradient_checkpointing: bool = False, **kwargs):
        """
        Args:
            attention_window: list of attention window sizes of length = number of layers.
                window size = number of attention locations on each side.
                For an affective window size of 512, use `attention_window=[256]*num_layers`
                which is 256 on each side.
            attention_dilation: list of attention dilation of length = number of layers.
                attention dilation of `1` means no dilation.
            autoregressive: do autoregressive attention or have attention of both sides
            attention_mode: 'n2' for regular n^2 self-attention, 'tvm' for TVM implemenation of Longformer
                selfattention, 'sliding_chunks' for another implementation of Longformer selfattention
        """
        super().__init__(**kwargs)
        self.from_mbart = False
        self.attention_window = attention_window
        self.attention_dilation = attention_dilation
        self.autoregressive = autoregressive
        self.attention_mode = attention_mode
        self.gradient_checkpointing = gradient_checkpointing
        assert self.attention_mode in ['sliding_chunks', 'n2']


class LongMBartModelCustom(MBartModel):
    def __init__(self, config: MBartConfig):
        super().__init__(config)
        del self.shared
        decoder_config = GPT2Config.from_dict(config.decoder_config)

        padding_idx, vocab_size = config.pad_token_id, config.vocab_size
        if self.config.from_mbart:
            self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)

        self.encoder = LongMBartEncoder(config)
        self.enc_to_dec_proj = torch.nn.Linear(config.d_model, decoder_config.n_embd)
        self.act = ACT2FN[decoder_config.activation_function]
        self.decoder = GPT2Model(decoder_config)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.encoder.embed_tokens

    def set_input_embeddings(self, value):
        self.encoder.embed_tokens = value

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # different to other models, MBart automatically creates decoder_input_ids from
        # input_ids if no decoder_input_ids are provided
        if decoder_input_ids is None and decoder_inputs_embeds is None:
            decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id)

        #print("input_ids: ", input_ids)
        #print("input_embeds: ", inputs_embeds)
        #print("decoder_input_ids: ", decoder_input_ids.shape)
        #print("attention_mask: ",attention_mask.shape)

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                head_mask=head_mask,
                inputs_embeds=inputs_embeds,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        encoder_hidden_states = encoder_outputs[0]

        #remove uneccessary padding spaces
        non_empty_mask = attention_mask.abs().sum(dim=0).bool()
        encoder_hidden_states = encoder_hidden_states[:,non_empty_mask]
        encoder_attention_mask = attention_mask[:,non_empty_mask]

        #to remove global attention tokens (2)
        encoder_attention_mask = torch.clamp(encoder_attention_mask, min=0, max=1)

        encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
        encoder_hidden_states = self.act(encoder_hidden_states)
        encoder_hidden_states = torch.nn.Dropout(p=0.1)(encoder_hidden_states)

        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            head_mask=decoder_head_mask,
            #cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )
        
class MLongformerEncoderDecoderForConditionalGeneration(MBartForConditionalGeneration):
    def __init__(self, config):
        super(MBartForConditionalGeneration, self).__init__(config)

        self.model = LongMBartModel(config)
        self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
        self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
        #print(self)

        if config.attention_mode == 'n2':
            pass  # do nothing, use MBartSelfAttention instead
        else:
            for i, layer in enumerate(self.model.encoder.layers):
                layer.self_attn = LongformerSelfAttentionForMBart(config, layer_id=i)
        # Initialize weights and apply final processing
        self.post_init()


class MLongformerEncoderDecoderConfig(MBartConfig):
    def __init__(self, attention_window: List[int] = None, attention_dilation: List[int] = None,
                 autoregressive: bool = False, attention_mode: str = 'sliding_chunks',
                 gradient_checkpointing: bool = False, **kwargs):
        """
        Args:
            attention_window: list of attention window sizes of length = number of layers.
                window size = number of attention locations on each side.
                For an affective window size of 512, use `attention_window=[256]*num_layers`
                which is 256 on each side.
            attention_dilation: list of attention dilation of length = number of layers.
                attention dilation of `1` means no dilation.
            autoregressive: do autoregressive attention or have attention of both sides
            attention_mode: 'n2' for regular n^2 self-attention, 'tvm' for TVM implemenation of Longformer
                selfattention, 'sliding_chunks' for another implementation of Longformer selfattention
        """
        super().__init__(**kwargs)
        self.attention_window = attention_window
        self.attention_dilation = attention_dilation
        self.autoregressive = autoregressive
        self.attention_mode = attention_mode
        self.gradient_checkpointing = gradient_checkpointing
        assert self.attention_mode in ['sliding_chunks', 'n2']

class LongformerSelfAttentionForMBart(nn.Module):
    def __init__(self, config, layer_id):
        super().__init__()
        self.embed_dim = config.d_model
        self.longformer_self_attn = LongformerSelfAttention(config, layer_id=layer_id)
        self.output = nn.Linear(self.embed_dim, self.embed_dim)

    def forward(
        self,
        hidden_states: Tensor, # shape (batch_size, q_len, model_size)
        key_value_states: Optional[Tensor] = None, # cross-attention in transformers.models.mbart.modeling_mbart
        past_key_value: Optional[Tuple[Tensor]] = None, # only for decoder
        attention_mask: Optional[Tensor] = None, # shape (batch_size, k_len) -> changed in transformers.models.modeling_mbart.MBartEncoder and MBartEncoderLayer (new mask uses bool -> global attention positions are lost, need to use the inverted orignal mask
        layer_head_mask: Optional[Tensor] = None, # head dropout?
        output_attentions: bool = False
    ) -> Tuple[Tensor, Optional[Tensor]]:

        bsz, tgt_len, embed_dim = hidden_states.size()
        assert embed_dim == self.embed_dim
        assert list(hidden_states.size()) == [bsz, tgt_len, embed_dim]

        outputs = self.longformer_self_attn(
            hidden_states,
            attention_mask=attention_mask * -1, # shape (batch_size, 1, 1, key_len)
            head_mask=None,
            encoder_hidden_states=None,
            encoder_attention_mask=None,
            output_attentions=output_attentions,
        )

        ## new: MBart encoder expects shape (seq_len, bsz, embed_dim), no transpose needed
        attn_output = self.output(outputs[0])
        # new return in MBartAttention has attn_output, attn_weights_reshaped, past_key_value (only for decoder), need to return 3 values (None for past_key_value)
        return (attn_output, outputs[1:] ,None) if len(outputs) == 2 else (attn_output, None, None)


class LongMBartEncoder(MBartEncoder):
    """
    Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
    [`MBartEncoderLayer`].

    Args:
        config: MBartConfig
        embed_tokens (nn.Embedding): output embedding
    """

    def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config)

        self.dropout = config.dropout
        self.layerdrop = config.encoder_layerdrop

        embed_dim = config.d_model
        self.padding_idx = config.pad_token_id
        self.max_source_positions = config.max_encoder_position_embeddings
        self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

        if embed_tokens is not None:
            self.embed_tokens = embed_tokens
        else:
            self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)

        self.embed_positions = MBartLearnedPositionalEmbedding(
            self.max_source_positions,
            embed_dim,
        )
        self.layers = nn.ModuleList([LongMBartEncoderLayer(config) for _ in range(config.encoder_layers)])
        self.layernorm_embedding = nn.LayerNorm(embed_dim)
        self.layer_norm = nn.LayerNorm(config.d_model)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        r"""
        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

                Indices can be obtained using [`MBartTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input = input_ids
            input_shape = input.shape
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input = inputs_embeds[:, :, -1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale

        embed_pos = self.embed_positions(input)

        hidden_states = inputs_embeds + embed_pos
        hidden_states = self.layernorm_embedding(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        # expand attention_mask
        longformer_attention_mask = None
        if attention_mask is not None:
            # need to return original, inverted mask for longformer attention, else value for global attention (=2 in given mask, will be -1) is lost
            longformer_attention_mask = 1 - attention_mask
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)


        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            if head_mask.size()[0] != len(self.layers):
                raise ValueError(
                    f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
                    f" {head_mask.size()[0]}."
                )
        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):  # skip the layer
                layer_outputs = (None, None)
            else:
                if self.gradient_checkpointing and self.training:

                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            return module(*inputs, output_attentions)

                        return custom_forward

                    layer_outputs = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(encoder_layer),
                        hidden_states,
                        attention_mask,
                        longformer_attention_mask,
                        (head_mask[idx] if head_mask is not None else None),
                    )
                else:
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask,
                        longformer_attention_mask,
                        layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                        output_attentions=output_attentions,
                    )

                hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        hidden_states = self.layer_norm(hidden_states)
        #print("Encoder output: ",hidden_states.shape)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


class LongMBartModel(MBartModel):
    def __init__(self, config: MBartConfig):
        super().__init__(config)

        padding_idx, vocab_size = config.pad_token_id, config.vocab_size
        self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)

        self.encoder = LongMBartEncoder(config, self.shared)
        self.decoder = MBartDecoder(config, self.shared)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Seq2SeqModelOutput, Tuple[torch.FloatTensor]]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # different to other models, MBart automatically creates decoder_input_ids from
        # input_ids if no decoder_input_ids are provided
        if decoder_input_ids is None and decoder_inputs_embeds is None:
            decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id)

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                head_mask=head_mask,
                inputs_embeds=inputs_embeds,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_outputs[0],
            encoder_attention_mask=attention_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

class LongMBartEncoderLayer(MBartEncoderLayer):
    def __init__(self, config: MBartConfig):
        super().__init__(config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        longformer_attention_mask: torch.Tensor,
        layer_head_mask: torch.Tensor,
        output_attentions: bool = False,
    ) -> torch.Tensor:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
            attention_mask (`torch.FloatTensor`): attention mask of size
                *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
            longformer_attention_mask (:obj:`torch.FloatTensor`): attention mask of size
                `(batch, src_len)` where 0=local, -1=global, 1=padding.
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
                *(encoder_attention_heads,)*.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
         # if longformer attention instead of mbart self attention: use special mask
        if isinstance(self.self_attn, LongformerSelfAttentionForMBart):
            attention_mask = longformer_attention_mask
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)
        hidden_states, attn_weights, _ = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
        )
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states

        if hidden_states.dtype == torch.float16 and (
            torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
        ):
            clamp_value = torch.finfo(hidden_states.dtype).max - 1000
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs
        
class Longformer(RobertaModel):
    def __init__(self, config):
        super(Longformer, self).__init__(config)
        if config.attention_mode == 'n2':
            pass  # do nothing, use BertSelfAttention instead
        else:
            for i, layer in enumerate(self.encoder.layer):
                layer.attention.self = LongformerSelfAttention(config, layer_id=i)


class LongformerForMaskedLM(RobertaForMaskedLM):
    def __init__(self, config):
        super(LongformerForMaskedLM, self).__init__(config)
        if config.attention_mode == 'n2':
            pass  # do nothing, use BertSelfAttention instead
        else:
            for i, layer in enumerate(self.roberta.encoder.layer):
                layer.attention.self = LongformerSelfAttention(config, layer_id=i)


class LongformerConfig(RobertaConfig):
    def __init__(self, attention_window: List[int] = None, attention_dilation: List[int] = None,
                 autoregressive: bool = False, attention_mode: str = 'sliding_chunks', **kwargs):
        """
        Args:
            attention_window: list of attention window sizes of length = number of layers.
                window size = number of attention locations on each side.
                For an affective window size of 512, use `attention_window=[256]*num_layers`
                which is 256 on each side.
            attention_dilation: list of attention dilation of length = number of layers.
                attention dilation of `1` means no dilation.
            autoregressive: do autoregressive attention or have attention of both sides
            attention_mode: 'n2' for regular n^2 self-attention, 'tvm' for TVM implemenation of Longformer
                selfattention, 'sliding_chunks' for another implementation of Longformer selfattention
        """
        super().__init__(**kwargs)
        self.attention_window = attention_window
        self.attention_dilation = attention_dilation
        self.autoregressive = autoregressive
        self.attention_mode = attention_mode
        assert self.attention_mode in ['sliding_chunks', 'n2', 'sliding_chunks_no_overlap']


class LongformerSelfAttention(nn.Module):
    def __init__(self, config, layer_id):
        super(LongformerSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
        self.num_heads = config.num_attention_heads
        self.head_dim = int(config.hidden_size / config.num_attention_heads)
        self.embed_dim = config.hidden_size

        self.query = nn.Linear(config.hidden_size, self.embed_dim)
        self.key = nn.Linear(config.hidden_size, self.embed_dim)
        self.value = nn.Linear(config.hidden_size, self.embed_dim)

        self.query_global = nn.Linear(config.hidden_size, self.embed_dim)
        self.key_global = nn.Linear(config.hidden_size, self.embed_dim)
        self.value_global = nn.Linear(config.hidden_size, self.embed_dim)

        self.dropout = config.attention_probs_dropout_prob

        self.layer_id = layer_id
        self.attention_window = config.attention_window[self.layer_id]
        self.attention_dilation = config.attention_dilation[self.layer_id]
        self.attention_mode = config.attention_mode
        self.autoregressive = config.autoregressive
        assert self.attention_window > 0
        assert self.attention_dilation > 0
        assert self.attention_mode in ['sliding_chunks', 'sliding_chunks_no_overlap']
        if self.attention_mode in ['sliding_chunks', 'sliding_chunks_no_overlap']:
            assert not self.autoregressive  # not supported
            assert self.attention_dilation == 1  # dilation is not supported

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
    ):
        '''
        The `attention_mask` is changed in `BertModel.forward` from 0, 1, 2 to
            -ve: no attention
              0: local attention
            +ve: global attention
        '''
        assert encoder_hidden_states is None, "`encoder_hidden_states` is not supported and should be None"
        assert encoder_attention_mask is None, "`encoder_attention_mask` is not supported and should be None"

        if attention_mask is not None:
            key_padding_mask = attention_mask < 0
            extra_attention_mask = attention_mask > 0
            remove_from_windowed_attention_mask = attention_mask != 0

            num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1)
            max_num_extra_indices_per_batch = num_extra_indices_per_batch.max()
            if max_num_extra_indices_per_batch <= 0:
                extra_attention_mask = None
            else:
                # To support the case of variable number of global attention in the rows of a batch,
                # we use the following three selection masks to select global attention embeddings
                # in a 3d tensor and pad it to `max_num_extra_indices_per_batch`
                # 1) selecting embeddings that correspond to global attention
                extra_attention_mask_nonzeros = extra_attention_mask.nonzero(as_tuple=True)
                zero_to_max_range = torch.arange(0, max_num_extra_indices_per_batch,
                                                 device=num_extra_indices_per_batch.device)
                # mask indicating which values are actually going to be padding
                selection_padding_mask = zero_to_max_range < num_extra_indices_per_batch.unsqueeze(dim=-1)
                # 2) location of the non-padding values in the selected global attention
                selection_padding_mask_nonzeros = selection_padding_mask.nonzero(as_tuple=True)
                # 3) location of the padding values in the selected global attention
                selection_padding_mask_zeros = (selection_padding_mask == 0).nonzero(as_tuple=True)
        else:
            remove_from_windowed_attention_mask = None
            extra_attention_mask = None
            key_padding_mask = None

        hidden_states = hidden_states.transpose(0, 1)
        seq_len, bsz, embed_dim = hidden_states.size()
        assert embed_dim == self.embed_dim
        q = self.query(hidden_states)
        k = self.key(hidden_states)
        v = self.value(hidden_states)
        q /= math.sqrt(self.head_dim)

        q = q.view(seq_len, bsz, self.num_heads, self.head_dim).transpose(0, 1)
        k = k.view(seq_len, bsz, self.num_heads, self.head_dim).transpose(0, 1)
        # attn_weights = (bsz, seq_len, num_heads, window*2+1)
        if self.attention_mode == "sliding_chunks":
            attn_weights = sliding_chunks_matmul_qk(q, k, self.attention_window, padding_value=0)
        elif self.attention_mode == "sliding_chunks_no_overlap":
            attn_weights = sliding_chunks_no_overlap_matmul_qk(q, k, self.attention_window, padding_value=0)
        else:
            raise False
        mask_invalid_locations(attn_weights, self.attention_window, self.attention_dilation, False)
        if remove_from_windowed_attention_mask is not None:
            # This implementation is fast and takes very little memory because num_heads x hidden_size = 1
            # from (bsz x seq_len) to (bsz x seq_len x num_heads x hidden_size)
            remove_from_windowed_attention_mask = remove_from_windowed_attention_mask.unsqueeze(dim=-1).unsqueeze(dim=-1)
            # cast to float/half then replace 1's with -inf
            float_mask = remove_from_windowed_attention_mask.type_as(q).masked_fill(remove_from_windowed_attention_mask, -10000.0)
            repeat_size = 1 if isinstance(self.attention_dilation, int) else len(self.attention_dilation)
            float_mask = float_mask.repeat(1, 1, repeat_size, 1)
            ones = float_mask.new_ones(size=float_mask.size())  # tensor of ones
            # diagonal mask with zeros everywhere and -inf inplace of padding
            if self.attention_mode == "sliding_chunks":
                d_mask = sliding_chunks_matmul_qk(ones, float_mask, self.attention_window, padding_value=0)
            elif self.attention_mode == "sliding_chunks_no_overlap":
                d_mask = sliding_chunks_no_overlap_matmul_qk(ones, float_mask, self.attention_window, padding_value=0)

            attn_weights += d_mask
        assert list(attn_weights.size())[:3] == [bsz, seq_len, self.num_heads]
        assert attn_weights.size(dim=3) in [self.attention_window * 2 + 1, self.attention_window * 3]

        # the extra attention
        if extra_attention_mask is not None:
            selected_k = k.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_heads, self.head_dim)
            selected_k[selection_padding_mask_nonzeros] = k[extra_attention_mask_nonzeros]
            # (bsz, seq_len, num_heads, max_num_extra_indices_per_batch)
            selected_attn_weights = torch.einsum('blhd,bshd->blhs', (q, selected_k))
            selected_attn_weights[selection_padding_mask_zeros[0], :, :, selection_padding_mask_zeros[1]] = -10000
            # concat to attn_weights
            # (bsz, seq_len, num_heads, extra attention count + 2*window+1)
            attn_weights = torch.cat((selected_attn_weights, attn_weights), dim=-1)
        attn_weights_float = F.softmax(attn_weights, dim=-1, dtype=torch.float32)  # use fp32 for numerical stability
        if key_padding_mask is not None:
            # softmax sometimes inserts NaN if all positions are masked, replace them with 0
            attn_weights_float = torch.masked_fill(attn_weights_float, key_padding_mask.unsqueeze(-1).unsqueeze(-1), 0.0)
        attn_weights = attn_weights_float.type_as(attn_weights)
        attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training)
        v = v.view(seq_len, bsz, self.num_heads, self.head_dim).transpose(0, 1)
        attn = 0
        if extra_attention_mask is not None:
            selected_attn_probs = attn_probs.narrow(-1, 0, max_num_extra_indices_per_batch)
            selected_v = v.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_heads, self.head_dim)
            selected_v[selection_padding_mask_nonzeros] = v[extra_attention_mask_nonzeros]
            # use `matmul` because `einsum` crashes sometimes with fp16
            # attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v))
            attn = torch.matmul(selected_attn_probs.transpose(1, 2), selected_v.transpose(1, 2).type_as(selected_attn_probs)).transpose(1, 2)
            attn_probs = attn_probs.narrow(-1, max_num_extra_indices_per_batch, attn_probs.size(-1) - max_num_extra_indices_per_batch).contiguous()

        if self.attention_mode == "sliding_chunks":
            attn += sliding_chunks_matmul_pv(attn_probs, v, self.attention_window)
        elif self.attention_mode == "sliding_chunks_no_overlap":
            attn += sliding_chunks_no_overlap_matmul_pv(attn_probs, v, self.attention_window)
        else:
            raise False

        attn = attn.type_as(hidden_states)
        assert list(attn.size()) == [bsz, seq_len, self.num_heads, self.head_dim]
        attn = attn.transpose(0, 1).reshape(seq_len, bsz, embed_dim).contiguous()

        # For this case, we'll just recompute the attention for these indices
        # and overwrite the attn tensor. TODO: remove the redundant computation
        if extra_attention_mask is not None:
            selected_hidden_states = hidden_states.new_zeros(max_num_extra_indices_per_batch, bsz, embed_dim)
            selected_hidden_states[selection_padding_mask_nonzeros[::-1]] = hidden_states[extra_attention_mask_nonzeros[::-1]]

            q = self.query_global(selected_hidden_states)
            k = self.key_global(hidden_states)
            v = self.value_global(hidden_states)
            q /= math.sqrt(self.head_dim)

            q = q.contiguous().view(max_num_extra_indices_per_batch, bsz * self.num_heads, self.head_dim).transpose(0, 1)  # (bsz*self.num_heads, max_num_extra_indices_per_batch, head_dim)
            k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)  # bsz * self.num_heads, seq_len, head_dim)
            v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)  # bsz * self.num_heads, seq_len, head_dim)
            attn_weights = torch.bmm(q, k.transpose(1, 2))
            assert list(attn_weights.size()) == [bsz * self.num_heads, max_num_extra_indices_per_batch, seq_len]

            attn_weights = attn_weights.view(bsz, self.num_heads, max_num_extra_indices_per_batch, seq_len)
            attn_weights[selection_padding_mask_zeros[0], :, selection_padding_mask_zeros[1], :] = -10000.0
            if key_padding_mask is not None:
                attn_weights = attn_weights.masked_fill(
                    key_padding_mask.unsqueeze(1).unsqueeze(2),
                    -10000.0,
                )
            attn_weights = attn_weights.view(bsz * self.num_heads, max_num_extra_indices_per_batch, seq_len)
            attn_weights_float = F.softmax(attn_weights, dim=-1, dtype=torch.float32)  # use fp32 for numerical stability
            attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training)
            selected_attn = torch.bmm(attn_probs, v)
            assert list(selected_attn.size()) == [bsz * self.num_heads, max_num_extra_indices_per_batch, self.head_dim]

            selected_attn_4d = selected_attn.view(bsz, self.num_heads, max_num_extra_indices_per_batch, self.head_dim)
            nonzero_selected_attn = selected_attn_4d[selection_padding_mask_nonzeros[0], :, selection_padding_mask_nonzeros[1]]
            attn[extra_attention_mask_nonzeros[::-1]] = nonzero_selected_attn.view(len(selection_padding_mask_nonzeros[0]), -1).type_as(hidden_states)

        context_layer = attn.transpose(0, 1) # attn shape: (seq_len, bsz, embed_dim), context_layer shape: (bsz, seq_len, embed_dim)
        if output_attentions:
            if extra_attention_mask is not None:
                # With global attention, return global attention probabilities only
                # batch_size x num_heads x max_num_global_attention_tokens x sequence_length
                # which is the attention weights from tokens with global attention to all tokens
                # It doesn't not return local attention
                # In case of variable number of global attantion in the rows of a batch,
                # attn_weights are padded with -10000.0 attention scores
                attn_weights = attn_weights.view(bsz, self.num_heads, max_num_extra_indices_per_batch, seq_len)
            else:
                # without global attention, return local attention probabilities
                # batch_size x num_heads x sequence_length x window_size
                # which is the attention weights of every token attending to its neighbours
                attn_weights = attn_weights.permute(0, 2, 1, 3)
        outputs = (context_layer, attn_weights) if output_attentions else (context_layer,)
        return outputs
        
def _skew(x, direction, padding_value):
    '''Convert diagonals into columns (or columns into diagonals depending on `direction`'''
    x_padded = F.pad(x, direction, value=padding_value)
    x_padded = x_padded.view(*x_padded.size()[:-2], x_padded.size(-1), x_padded.size(-2))
    return x_padded


def _skew2(x, padding_value):
    '''shift every row 1 step to right converting columns into diagonals'''
    # X = B x C x M x L
    B, C, M, L = x.size()
    x = F.pad(x, (0, M + 1), value=padding_value)  # B x C x M x (L+M+1)
    x = x.view(B, C, -1)  # B x C x ML+MM+M
    x = x[:, :, :-M]  # B x C x ML+MM
    x = x.view(B, C, M, M + L)  # B x C, M x L+M
    x = x[:, :, :, :-1]
    return x


def _chunk(x, w):
    '''convert into overlapping chunkings. Chunk size = 2w, overlap size = w'''

    # non-overlapping chunks of size = 2w
    x = x.view(x.size(0), x.size(1) // (w * 2), w * 2, x.size(2))

    # use `as_strided` to make the chunks overlap with an overlap size = w
    chunk_size = list(x.size())
    chunk_size[1] = chunk_size[1] * 2 - 1

    chunk_stride = list(x.stride())
    chunk_stride[1] = chunk_stride[1] // 2
    return x.as_strided(size=chunk_size, stride=chunk_stride)


def sliding_chunks_matmul_qk(q: torch.Tensor, k: torch.Tensor, w: int, padding_value: float):
    '''Matrix multiplicatio of query x key tensors using with a sliding window attention pattern.
    This implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer)
    with an overlap of size w'''
    bsz, seqlen, num_heads, head_dim = q.size()
    assert seqlen % (w * 2) == 0
    assert q.size() == k.size()

    chunks_count = seqlen // w - 1

    # group bsz and num_heads dimensions into one, then chunk seqlen into chunks of size w * 2
    q = q.transpose(1, 2).reshape(bsz * num_heads, seqlen, head_dim)
    k = k.transpose(1, 2).reshape(bsz * num_heads, seqlen, head_dim)

    chunk_q = _chunk(q, w)
    chunk_k = _chunk(k, w)

    # matrix multipication
    # bcxd: bsz*num_heads x chunks x 2w x head_dim
    # bcyd: bsz*num_heads x chunks x 2w x head_dim
    # bcxy: bsz*num_heads x chunks x 2w x 2w
    chunk_attn = torch.einsum('bcxd,bcyd->bcxy', (chunk_q, chunk_k))  # multiply

    # convert diagonals into columns
    diagonal_chunk_attn = _skew(chunk_attn, direction=(0, 0, 0, 1), padding_value=padding_value)

    # allocate space for the overall attention matrix where the chunks are compined. The last dimension
    # has (w * 2 + 1) columns. The first (w) columns are the w lower triangles (attention from a word to
    # w previous words). The following column is attention score from each word to itself, then
    # followed by w columns for the upper triangle.

    diagonal_attn = diagonal_chunk_attn.new_empty((bsz * num_heads, chunks_count + 1, w, w * 2 + 1))

    # copy parts from diagonal_chunk_attn into the compined matrix of attentions
    # - copying the main diagonal and the upper triangle
    diagonal_attn[:, :-1, :, w:] = diagonal_chunk_attn[:, :, :w, :w + 1]
    diagonal_attn[:, -1, :, w:] = diagonal_chunk_attn[:, -1, w:, :w + 1]
    # - copying the lower triangle
    diagonal_attn[:, 1:, :, :w] = diagonal_chunk_attn[:, :, - (w + 1):-1, w + 1:]
    diagonal_attn[:, 0, 1:w, 1:w] = diagonal_chunk_attn[:, 0, :w - 1, 1 - w:]

    # separate bsz and num_heads dimensions again
    diagonal_attn = diagonal_attn.view(bsz, num_heads, seqlen, 2 * w + 1).transpose(2, 1)

    mask_invalid_locations(diagonal_attn, w, 1, False)
    return diagonal_attn


def sliding_chunks_matmul_pv(prob: torch.Tensor, v: torch.Tensor, w: int):
    '''Same as sliding_chunks_matmul_qk but for prob and value tensors. It is expecting the same output
    format from sliding_chunks_matmul_qk'''
    bsz, seqlen, num_heads, head_dim = v.size()
    assert seqlen % (w * 2) == 0
    assert prob.size()[:3] == v.size()[:3]
    assert prob.size(3) == 2 * w + 1
    chunks_count = seqlen // w - 1
    # group bsz and num_heads dimensions into one, then chunk seqlen into chunks of size 2w
    chunk_prob = prob.transpose(1, 2).reshape(bsz * num_heads, seqlen // w, w, 2 * w + 1)

    # group bsz and num_heads dimensions into one
    v = v.transpose(1, 2).reshape(bsz * num_heads, seqlen, head_dim)

    # pad seqlen with w at the beginning of the sequence and another w at the end
    padded_v = F.pad(v, (0, 0, w, w), value=-1)

    # chunk padded_v into chunks of size 3w and an overlap of size w
    chunk_v_size = (bsz * num_heads, chunks_count + 1, 3 * w, head_dim)
    chunk_v_stride = padded_v.stride()
    chunk_v_stride = chunk_v_stride[0], w * chunk_v_stride[1], chunk_v_stride[1], chunk_v_stride[2]
    chunk_v = padded_v.as_strided(size=chunk_v_size, stride=chunk_v_stride)

    skewed_prob = _skew2(chunk_prob, padding_value=0)

    context = torch.einsum('bcwd,bcdh->bcwh', (skewed_prob, chunk_v))
    return context.view(bsz, num_heads, seqlen, head_dim).transpose(1, 2)


def pad_to_window_size(input_ids: torch.Tensor, attention_mask: torch.Tensor,
                       one_sided_window_size: int, pad_token_id: int):
    '''A helper function to pad tokens and mask to work with the sliding_chunks implementation of Longformer selfattention.
    Input:
        input_ids = torch.Tensor(bsz x seqlen): ids of wordpieces
        attention_mask = torch.Tensor(bsz x seqlen): attention mask
        one_sided_window_size = int: window size on one side of each token
        pad_token_id = int: tokenizer.pad_token_id
    Returns
        (input_ids, attention_mask) padded to length divisible by 2 * one_sided_window_size
    '''
    w = int(2 * one_sided_window_size)
    seqlen = input_ids.size(1)
    padding_len = (w - seqlen % w) % w
    input_ids = F.pad(input_ids, (0, padding_len), value=pad_token_id)
    attention_mask = F.pad(attention_mask, (0, padding_len), value=False)  # no attention on the padding tokens
    return input_ids, attention_mask


# ========= "sliding_chunks_no_overlap": alternative implemenation of the sliding window attention =========
# This implementation uses non-overlapping chunks (or blocks) of size `w` with number of local attention = 3xw
# To make this implemenation comparable to "sliding_chunks" set w such that
#       w_of_sliding_chunks_no_overlap = w_of_sliding_chunks * 2 / 3
# For example,
#    w_of_sliding_chunks = 256 (this is one sided. Total attention size = 512)
#    w_of_sliding_chunks_no_overlap = 170 (Total attention size = 510)
# Performance:
# - Speed: 30% faster than "sliding_chunks"
# - Memory: 95% of the memory usage of "sliding_chunks"
# The windows are asymmetric where number of attention on each side of a token ranges between w to 2w
# while "sliding_chunks" has a symmetric window around each token.


def sliding_chunks_no_overlap_matmul_qk(q: torch.Tensor, k: torch.Tensor, w: int, padding_value: float):
    bsz, seqlen, num_heads, head_dim = q.size()
    assert seqlen % w == 0
    assert q.size() == k.size()
    # chunk seqlen into non-overlapping chunks of size w
    chunk_q = q.view(bsz, seqlen // w, w, num_heads, head_dim)
    chunk_k = k.view(bsz, seqlen // w, w, num_heads, head_dim)
    chunk_k_expanded = torch.stack((
        F.pad(chunk_k[:, :-1], (0, 0, 0, 0, 0, 0, 1, 0), value=0.0),
        chunk_k,
        F.pad(chunk_k[:, 1:], (0, 0, 0, 0, 0, 0, 0, 1), value=0.0),
    ), dim=-1)
    diagonal_attn = torch.einsum('bcxhd,bcyhde->bcxhey', (chunk_q, chunk_k_expanded))  # multiply
    return diagonal_attn.reshape(bsz, seqlen, num_heads, 3 * w)


def sliding_chunks_no_overlap_matmul_pv(prob: torch.Tensor, v: torch.Tensor, w: int):
    bsz, seqlen, num_heads, head_dim = v.size()
    chunk_prob = prob.view(bsz, seqlen // w, w, num_heads, 3, w)
    chunk_v = v.view(bsz, seqlen // w, w, num_heads, head_dim)
    chunk_v_extended = torch.stack((
        F.pad(chunk_v[:, :-1], (0, 0, 0, 0, 0, 0, 1, 0), value=0.0),
        chunk_v,
        F.pad(chunk_v[:, 1:], (0, 0, 0, 0, 0, 0, 0, 1), value=0.0),
    ), dim=-1)
    context = torch.einsum('bcwhpd,bcdhep->bcwhe', (chunk_prob, chunk_v_extended))
    return context.reshape(bsz, seqlen, num_heads, head_dim)

def _get_invalid_locations_mask_fixed_dilation(seq_len: int, w: int, d: int):
    diagonals_list = []
    for j in range(-d * w, d, d):
        diagonal_mask = torch.zeros(seq_len, device='cpu', dtype=torch.uint8)
        diagonal_mask[:-j] = 1
        diagonals_list.append(diagonal_mask)
    return torch.stack(diagonals_list, dim=-1)

@lru_cache()
def _get_invalid_locations_mask(w: int, d: Union[torch.Tensor,int], autoregressive: bool, device: str):
    if isinstance(d, int):
        affected_seq_len = w * d
        mask = _get_invalid_locations_mask_fixed_dilation(affected_seq_len, w, d)
        mask = mask[None, :, None, :]
    else:
        affected_seq_len = w * d.max()
        head_masks = []
        d_list = d.cpu().numpy().tolist()
        for d in d_list:
            one_head_mask = _get_invalid_locations_mask_fixed_dilation(affected_seq_len, w, d)
            head_masks.append(one_head_mask)
        mask = torch.stack(head_masks, dim=-2)
        mask = mask[None, :, :, :]

    ending_mask = None if autoregressive else mask.flip(dims=(1, 3)).bool().to(device)
    return affected_seq_len, mask.bool().to(device), ending_mask

def mask_invalid_locations(input_tensor: torch.Tensor, w: int, d: Union[torch.Tensor, int], autoregressive: bool) -> torch.Tensor:
    affected_seq_len, beginning_mask, ending_mask = _get_invalid_locations_mask(w, d, autoregressive, input_tensor.device)
    seq_len = input_tensor.size(1)
    beginning_input = input_tensor[:, :affected_seq_len, :, :w+1]
    beginning_mask = beginning_mask[:, :seq_len].expand(beginning_input.size())
    beginning_input.masked_fill_(beginning_mask, -float('inf'))
    if not autoregressive:
        ending_input = input_tensor[:, -affected_seq_len:, :, -(w+1):]
        ending_mask = ending_mask[:, -seq_len:].expand(ending_input.size())
        ending_input.masked_fill_(ending_mask, -float('inf'))