Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
tags:
|
| 6 |
+
- text-generation
|
| 7 |
+
- cli
|
| 8 |
+
- shell
|
| 9 |
+
- command-line
|
| 10 |
+
- sft
|
| 11 |
+
- instruction-following
|
| 12 |
+
pipeline_tag: text-generation
|
| 13 |
+
widget:
|
| 14 |
+
- text: "Instruction: List all files in the current directory\nCommand:"
|
| 15 |
+
example_title: List files
|
| 16 |
+
- text: "Instruction: Find all Python files\nCommand:"
|
| 17 |
+
example_title: Find Python files
|
| 18 |
+
- text: "Instruction: Show disk usage\nCommand:"
|
| 19 |
+
example_title: Disk usage
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
# Tiny-LLM CLI SFT (54M)
|
| 23 |
+
|
| 24 |
+
A **54 million parameter** language model fine-tuned for CLI command generation.
|
| 25 |
+
|
| 26 |
+
## Model Description
|
| 27 |
+
|
| 28 |
+
This model is a Supervised Fine-Tuned (SFT) version of [jonmabe/tiny-llm-54m](https://huggingface.co/jonmabe/tiny-llm-54m), trained to generate Unix/Linux shell commands from natural language instructions.
|
| 29 |
+
|
| 30 |
+
### Training Data
|
| 31 |
+
|
| 32 |
+
- **Geddy's NL2Bash dataset**: ~2,300 natural language to bash command pairs
|
| 33 |
+
- **NL2Bash benchmark**: Standard benchmark for command translation
|
| 34 |
+
- **Synthetic examples**: Additional generated pairs
|
| 35 |
+
- **Total**: ~13,000 training pairs
|
| 36 |
+
|
| 37 |
+
### Training Details
|
| 38 |
+
|
| 39 |
+
| Parameter | Value |
|
| 40 |
+
|-----------|-------|
|
| 41 |
+
| Base Model | tiny-llm-54m |
|
| 42 |
+
| Training Steps | 2,000 |
|
| 43 |
+
| Best Checkpoint | Step 1,000 |
|
| 44 |
+
| Best Val Loss | 1.2456 |
|
| 45 |
+
| Learning Rate | 5e-5 |
|
| 46 |
+
| Batch Size | 16 |
|
| 47 |
+
| Hardware | NVIDIA RTX 5090 |
|
| 48 |
+
| Training Time | ~9 minutes |
|
| 49 |
+
|
| 50 |
+
## Architecture
|
| 51 |
+
|
| 52 |
+
- **Parameters**: 54.93M
|
| 53 |
+
- **Layers**: 12
|
| 54 |
+
- **Hidden Size**: 512
|
| 55 |
+
- **Attention Heads**: 8
|
| 56 |
+
- **Intermediate Size**: 1408
|
| 57 |
+
- **Max Position**: 512
|
| 58 |
+
- **Vocabulary**: 32,000 tokens
|
| 59 |
+
- **Features**: RoPE, RMSNorm, SwiGLU, Weight Tying
|
| 60 |
+
|
| 61 |
+
## Usage
|
| 62 |
+
|
| 63 |
+
### Prompt Format
|
| 64 |
+
|
| 65 |
+
```
|
| 66 |
+
Instruction: <natural language description>
|
| 67 |
+
Command:
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
### Example
|
| 71 |
+
|
| 72 |
+
```python
|
| 73 |
+
from model import TinyLLM
|
| 74 |
+
import torch
|
| 75 |
+
|
| 76 |
+
# Load model
|
| 77 |
+
checkpoint = torch.load("best_model.pt", map_location="cpu")
|
| 78 |
+
model = TinyLLM(checkpoint["config"]["model"])
|
| 79 |
+
model.load_state_dict(checkpoint["model_state_dict"])
|
| 80 |
+
model.eval()
|
| 81 |
+
|
| 82 |
+
# Generate
|
| 83 |
+
prompt = "Instruction: Find all Python files modified in the last day\nCommand:"
|
| 84 |
+
# ... tokenize and generate
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
## Limitations
|
| 88 |
+
|
| 89 |
+
⚠️ **Known Issues:**
|
| 90 |
+
- Tokenizer decode shows raw BPE tokens (Ġ = space, Ċ = newline)
|
| 91 |
+
- Model generates fragments of correct commands but output can be noisy
|
| 92 |
+
- Needs more training steps for reliable generation
|
| 93 |
+
- Small model size limits command complexity
|
| 94 |
+
|
| 95 |
+
## Improvement Plan
|
| 96 |
+
|
| 97 |
+
1. **Fix tokenizer decode** - Proper BPE to text conversion
|
| 98 |
+
2. **Longer training** - 5,000-10,000 steps
|
| 99 |
+
3. **Data quality** - Curate cleaner training pairs
|
| 100 |
+
4. **Lower LR** - More stable convergence with 1e-5
|
| 101 |
+
|
| 102 |
+
## License
|
| 103 |
+
|
| 104 |
+
Apache 2.0
|
| 105 |
+
|
| 106 |
+
## Citation
|
| 107 |
+
|
| 108 |
+
```bibtex
|
| 109 |
+
@misc{tiny-llm-cli-sft-2026,
|
| 110 |
+
author = {Jon Mabe},
|
| 111 |
+
title = {Tiny-LLM CLI SFT: Small Language Model for Command Generation},
|
| 112 |
+
year = {2026},
|
| 113 |
+
publisher = {HuggingFace},
|
| 114 |
+
url = {https://huggingface.co/jonmabe/tiny-llm-cli-sft}
|
| 115 |
+
}
|
| 116 |
+
```
|