Upload model.py with huggingface_hub
Browse files
model.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Tiny Transformer with modern components:
|
| 3 |
+
- RoPE (Rotary Position Embeddings)
|
| 4 |
+
- RMSNorm
|
| 5 |
+
- SwiGLU activation
|
| 6 |
+
- Weight tying
|
| 7 |
+
"""
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
import math
|
| 12 |
+
|
| 13 |
+
class RMSNorm(nn.Module):
|
| 14 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.eps = eps
|
| 17 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 18 |
+
|
| 19 |
+
def forward(self, x):
|
| 20 |
+
norm = torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 21 |
+
return x * norm * self.weight
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class RotaryEmbedding(nn.Module):
|
| 25 |
+
def __init__(self, dim: int, max_seq_len: int = 512, base: int = 10000):
|
| 26 |
+
super().__init__()
|
| 27 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
| 28 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 29 |
+
self.max_seq_len = max_seq_len
|
| 30 |
+
|
| 31 |
+
def forward(self, x, seq_len: int):
|
| 32 |
+
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
|
| 33 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 34 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 35 |
+
return emb.cos(), emb.sin()
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def rotate_half(x):
|
| 39 |
+
x1, x2 = x.chunk(2, dim=-1)
|
| 40 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def apply_rotary_pos_emb(q, k, cos, sin):
|
| 44 |
+
cos = cos.unsqueeze(0).unsqueeze(0) # [1, 1, seq_len, dim]
|
| 45 |
+
sin = sin.unsqueeze(0).unsqueeze(0)
|
| 46 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 47 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 48 |
+
return q_embed, k_embed
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class SwiGLU(nn.Module):
|
| 52 |
+
def __init__(self, hidden_size: int, intermediate_size: int):
|
| 53 |
+
super().__init__()
|
| 54 |
+
self.w1 = nn.Linear(hidden_size, intermediate_size, bias=False)
|
| 55 |
+
self.w2 = nn.Linear(intermediate_size, hidden_size, bias=False)
|
| 56 |
+
self.w3 = nn.Linear(hidden_size, intermediate_size, bias=False)
|
| 57 |
+
|
| 58 |
+
def forward(self, x):
|
| 59 |
+
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class Attention(nn.Module):
|
| 63 |
+
def __init__(self, hidden_size: int, num_heads: int, dropout: float = 0.0):
|
| 64 |
+
super().__init__()
|
| 65 |
+
self.num_heads = num_heads
|
| 66 |
+
self.head_dim = hidden_size // num_heads
|
| 67 |
+
|
| 68 |
+
self.q_proj = nn.Linear(hidden_size, hidden_size, bias=False)
|
| 69 |
+
self.k_proj = nn.Linear(hidden_size, hidden_size, bias=False)
|
| 70 |
+
self.v_proj = nn.Linear(hidden_size, hidden_size, bias=False)
|
| 71 |
+
self.o_proj = nn.Linear(hidden_size, hidden_size, bias=False)
|
| 72 |
+
|
| 73 |
+
self.rotary = RotaryEmbedding(self.head_dim)
|
| 74 |
+
self.dropout = nn.Dropout(dropout)
|
| 75 |
+
|
| 76 |
+
def forward(self, x, mask=None):
|
| 77 |
+
B, T, C = x.shape
|
| 78 |
+
|
| 79 |
+
q = self.q_proj(x).view(B, T, self.num_heads, self.head_dim).transpose(1, 2)
|
| 80 |
+
k = self.k_proj(x).view(B, T, self.num_heads, self.head_dim).transpose(1, 2)
|
| 81 |
+
v = self.v_proj(x).view(B, T, self.num_heads, self.head_dim).transpose(1, 2)
|
| 82 |
+
|
| 83 |
+
cos, sin = self.rotary(x, T)
|
| 84 |
+
q, k = apply_rotary_pos_emb(q, k, cos, sin)
|
| 85 |
+
|
| 86 |
+
# Scaled dot-product attention
|
| 87 |
+
scale = 1.0 / math.sqrt(self.head_dim)
|
| 88 |
+
attn = torch.matmul(q, k.transpose(-2, -1)) * scale
|
| 89 |
+
|
| 90 |
+
if mask is not None:
|
| 91 |
+
attn = attn.masked_fill(mask == 0, float('-inf'))
|
| 92 |
+
|
| 93 |
+
attn = F.softmax(attn, dim=-1)
|
| 94 |
+
attn = self.dropout(attn)
|
| 95 |
+
|
| 96 |
+
out = torch.matmul(attn, v)
|
| 97 |
+
out = out.transpose(1, 2).contiguous().view(B, T, C)
|
| 98 |
+
return self.o_proj(out)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class TransformerBlock(nn.Module):
|
| 102 |
+
def __init__(self, hidden_size: int, num_heads: int, intermediate_size: int, dropout: float = 0.0):
|
| 103 |
+
super().__init__()
|
| 104 |
+
self.norm1 = RMSNorm(hidden_size)
|
| 105 |
+
self.attn = Attention(hidden_size, num_heads, dropout)
|
| 106 |
+
self.norm2 = RMSNorm(hidden_size)
|
| 107 |
+
self.ffn = SwiGLU(hidden_size, intermediate_size)
|
| 108 |
+
|
| 109 |
+
def forward(self, x, mask=None):
|
| 110 |
+
x = x + self.attn(self.norm1(x), mask)
|
| 111 |
+
x = x + self.ffn(self.norm2(x))
|
| 112 |
+
return x
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class TinyLLM(nn.Module):
|
| 116 |
+
def __init__(
|
| 117 |
+
self,
|
| 118 |
+
vocab_size: int = 32000,
|
| 119 |
+
hidden_size: int = 512,
|
| 120 |
+
num_layers: int = 12,
|
| 121 |
+
num_heads: int = 8,
|
| 122 |
+
intermediate_size: int = 1408,
|
| 123 |
+
max_position_embeddings: int = 512,
|
| 124 |
+
dropout: float = 0.0,
|
| 125 |
+
tie_weights: bool = True,
|
| 126 |
+
):
|
| 127 |
+
super().__init__()
|
| 128 |
+
self.vocab_size = vocab_size
|
| 129 |
+
self.hidden_size = hidden_size
|
| 130 |
+
|
| 131 |
+
self.embed_tokens = nn.Embedding(vocab_size, hidden_size)
|
| 132 |
+
self.layers = nn.ModuleList([
|
| 133 |
+
TransformerBlock(hidden_size, num_heads, intermediate_size, dropout)
|
| 134 |
+
for _ in range(num_layers)
|
| 135 |
+
])
|
| 136 |
+
self.norm = RMSNorm(hidden_size)
|
| 137 |
+
self.lm_head = nn.Linear(hidden_size, vocab_size, bias=False)
|
| 138 |
+
|
| 139 |
+
if tie_weights:
|
| 140 |
+
self.lm_head.weight = self.embed_tokens.weight
|
| 141 |
+
|
| 142 |
+
# Causal mask
|
| 143 |
+
self.register_buffer(
|
| 144 |
+
"causal_mask",
|
| 145 |
+
torch.tril(torch.ones(max_position_embeddings, max_position_embeddings))
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
self._init_weights()
|
| 149 |
+
|
| 150 |
+
def _init_weights(self):
|
| 151 |
+
for module in self.modules():
|
| 152 |
+
if isinstance(module, nn.Linear):
|
| 153 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 154 |
+
elif isinstance(module, nn.Embedding):
|
| 155 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 156 |
+
|
| 157 |
+
def forward(self, input_ids, labels=None):
|
| 158 |
+
B, T = input_ids.shape
|
| 159 |
+
|
| 160 |
+
x = self.embed_tokens(input_ids)
|
| 161 |
+
mask = self.causal_mask[:T, :T]
|
| 162 |
+
|
| 163 |
+
for layer in self.layers:
|
| 164 |
+
x = layer(x, mask)
|
| 165 |
+
|
| 166 |
+
x = self.norm(x)
|
| 167 |
+
logits = self.lm_head(x)
|
| 168 |
+
|
| 169 |
+
loss = None
|
| 170 |
+
if labels is not None:
|
| 171 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 172 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 173 |
+
loss = F.cross_entropy(
|
| 174 |
+
shift_logits.view(-1, self.vocab_size),
|
| 175 |
+
shift_labels.view(-1),
|
| 176 |
+
ignore_index=-100
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
return {"loss": loss, "logits": logits}
|
| 180 |
+
|
| 181 |
+
def count_parameters(self):
|
| 182 |
+
return sum(p.numel() for p in self.parameters())
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
if __name__ == "__main__":
|
| 186 |
+
# Test model
|
| 187 |
+
model = TinyLLM()
|
| 188 |
+
print(f"Parameters: {model.count_parameters() / 1e6:.2f}M")
|
| 189 |
+
|
| 190 |
+
x = torch.randint(0, 32000, (2, 128))
|
| 191 |
+
out = model(x, labels=x)
|
| 192 |
+
print(f"Loss: {out['loss'].item():.4f}")
|
| 193 |
+
print(f"Logits shape: {out['logits'].shape}")
|