File size: 1,807 Bytes
8a0c26e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e146f2
8a0c26e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e146f2
 
 
 
 
 
 
 
8a0c26e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-8-fast-18
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-8-fast-18

This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-refute-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-refute-no-label-40) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7275

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8.0

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 6.4177        | 1.0   | 1    | 3.1077          |
| 3.4391        | 2.0   | 2    | 0.0751          |
| 2.6175        | 3.0   | 3    | 1.8686          |
| 2.2705        | 4.0   | 4    | 2.1441          |
| 3.0889        | 5.0   | 5    | 0.0015          |
| 2.4845        | 6.0   | 6    | 0.0053          |
| 1.8426        | 7.0   | 7    | 3.6611          |
| 3.1042        | 8.0   | 8    | 0.0442          |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3