File size: 9,090 Bytes
ab9f2cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import sympy as sp
import wandb
from PIL import Image
from datasets import load_dataset
from torchvision import transforms
from down_unet import down_model
'''上面的网络需要接受三个信息,上下采样模块需要重写,两次宽高减2后接受三个信息,renet块加入时间信息,'''
class conv_block(nn.Module): #一个下采样模块包含两个卷积层,深度channel从1-64-128-256这样[B,C,H,W]-->[B,C_DIM,H-2,W-2]
def __init__(self,in_channel,num_heads,channel_dim,use ="down"):
super(conv_block,self).__init__() #in_channel输入通道数,channle_dim输出通道数,一个块减少2
self.in_channel = in_channel
self.num_heads = num_heads
self.channel_dim = channel_dim
self.use = use
self.GN = nn.GroupNorm(num_groups=4, num_channels=in_channel) #这个channel指的是输入通道数
# num_groups 是组数(2,4,8)输入特征的通道分成多少组进行归一化,num_channels 是输入的通道数
self.conv = nn.Conv2d(in_channels=in_channel, out_channels=in_channel, kernel_size=3,
stride=1, padding=1, bias=False)
self.silu = nn.SiLU()
self.attention = nn.MultiheadAttention(embed_dim=self.in_channel, num_heads=self.num_heads)
if self.use == "down":
self.conv1 = nn.Conv2d(in_channels=self.in_channel, out_channels=self.channel_dim, kernel_size=3,
stride=1, padding=0, bias=False)
elif self.use =="up":
self.conv1 = nn.Conv2d(in_channels=self.in_channel, out_channels=self.channel_dim, kernel_size=3,
stride=1, padding=2, bias=False)
def resnet_block(self,X): #隐藏层使用和输入一样的大小
out = self.GN(X)
out = self.conv(out)
out = self.silu(out) #这里要加入时间信息
out = self.GN(out)
out = self.conv(out)
out = self.silu(out)
return out + X
def attention_block(self,X):
B,C,H,W = X.size()
out = self.GN(X)
out = self.conv(out)
out = out.view(B, self.in_channel, H * W).transpose(1, 2) # 将输入重构为 [B, L, C],其中 L = H * W
out, weights = self.attention(out, out, out)
out = out.transpose(1, 2).view(B, self.in_channel, H, W)
out = self.conv(out)
return out+X
def forward(self,X):
out = self.resnet_block(X)
out = self.attention_block(out)
out = self.conv1(out)
return out
class down_block(nn.Module): #宽高减4,加入两个信息,然后然后除以2
def __init__(self,in_channel,channel_dim): #in_channel4-->channel_dim64
super(down_block,self).__init__()
self.channel_dim = channel_dim
self.in_channel = in_channel
self.block1 = conv_block(in_channel=self.in_channel,num_heads=4,
channel_dim=self.channel_dim,use="down")
self.block2 = conv_block(in_channel=self.channel_dim, num_heads=4,
channel_dim=self.channel_dim, use="down")
self.return_conv = nn.Conv2d(in_channels=self.channel_dim*2,out_channels=self.channel_dim,kernel_size=1,
stride=1,padding=0,bias=False)
self.attention = nn.MultiheadAttention(embed_dim=self.channel_dim, num_heads=4)
self.down_pool = nn.Conv2d(in_channels=self.channel_dim, out_channels=self.channel_dim, kernel_size=2,
stride=2, padding=0, bias=False)
def caculate_attention(self,X_q,Y_kv):
B,C,H,W = X_q.size()
X_q = X_q.view(B, self.channel_dim, H * W).transpose(1, 2) # 将输入重构为 [B, L, C],其中 L = H * W
Y_kv = Y_kv.view(B, self.channel_dim, H * W).transpose(1, 2)
out, weights = self.attention(X_q, Y_kv, Y_kv)
out = out.transpose(1, 2).view(B, self.channel_dim, H, W)
return out
def forward(self,X,attention_out,pos_encoding): #输入[1,4,128,128],输出[1.64,124,124]-->[1,64,62,62]
out = self.block1(X)
for_skip_connection = self.block2(out)
out = torch.cat((for_skip_connection,pos_encoding),dim=1)
out = self.return_conv(out)
out = self.caculate_attention(X_q=attention_out,Y_kv=out)
out = self.down_pool(out)
return out,for_skip_connection
'''
X = torch.randn(1,4,128,128)
attention_out = torch.randn(1,64,124,124)
pos_encoding = torch.randn(1,64,124,124)
model = down_block(4,64,4)
out = model(X,attention_out,pos_encoding)
print(out.shape)
'''
class up_block(nn.Module):
def __init__(self,in_channel): #这里的in_channel指的是cat之后的通道数
super(up_block,self).__init__()
self.in_channel = in_channel
self.block1 = conv_block(in_channel=in_channel*2, num_heads=4,
channel_dim=in_channel,use="up")
self.block2 = conv_block(in_channel=in_channel, num_heads=4,
channel_dim=in_channel,use="up")
self.up_pool = nn.ConvTranspose2d(self.in_channel*2, self.in_channel,
kernel_size=2, stride=2)
self.return_conv = nn.Conv2d(in_channels=self.in_channel * 2, out_channels=self.in_channel, kernel_size=1,
stride=1, padding=0, bias=False)
self.attention = nn.MultiheadAttention(embed_dim=self.in_channel, num_heads=4)
def caculate_attention(self,X_q,Y_kv):
B,C,H,W = X_q.size()
X_q = X_q.view(B, self.in_channel, H * W).transpose(1, 2) # 将输入重构为 [B, L, C],其中 L = H * W
Y_kv = Y_kv.view(B, self.in_channel, H * W).transpose(1, 2)
out, weights = self.attention(X_q, Y_kv, Y_kv)
out = out.transpose(1, 2).view(B, self.in_channel, H, W)
return out
def forward(self,input,input_skip,attention_out,pos_encoding): #先对输入进行上采样,然后和跳跃的拼接,之后经过两个block
after_transposed = self.up_pool(input) #上采样得到的大小
after_cat = torch.cat((after_transposed, input_skip), dim=1) # 拼接张量
after_cat = self.return_conv(after_cat)
after_cat = torch.cat((after_cat, pos_encoding), dim=1)
after_cat = self.return_conv(after_cat)
out = self.caculate_attention(X_q=attention_out, Y_kv=after_cat)
out = self.block2(out) #通道数不用再降低了
out = self.block2(out)
return out
'''
X = torch.randn(1,128,62,62)
input_skip = torch.randn(1,64,124,124)
attention_out = torch.randn(1,64,124,124)
pos_encoding = torch.randn(1,64,124,124)
model = up_block(in_channel=64,num_head=4)
out = model(X,input_skip,attention_out,pos_encoding)
print(out.shape) # torch.Size([1, 64, 128, 128])
'''
class up_model(nn.Module):
def __init__(self):
super(up_model,self).__init__()
self.down_model = down_model()
self.start_conv = nn.Conv2d(in_channels=3, out_channels=4, kernel_size=1, stride=1)
self.down_block1 = down_block(4,64)
self.down_block2 = down_block(64,128)
self.down_block3 = down_block(128,256)
self.down_block4 = down_block(256,512)
self.bottle_conv = nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=1, stride=1)
self.up_block4 = up_block(512)
self.up_block3 = up_block(256)
self.up_block2 = up_block(128)
self.up_block1 = up_block(64)
self.final_conv = nn.Conv2d(in_channels=64, out_channels=3, kernel_size=1, stride=1)
def forward(self,input): #这个地方的输入一定要除的尽
X, attention_out1, attention_out2, attention_out3, attention_out4, attention_out5, attention_out6, attention_out7, attention_out8, pos_encoding1, pos_encoding2, pos_encoding3, pos_encoding4, pos_encoding5, pos_encoding6, pos_encoding7, pos_encoding8 =self.down_model(input)
input = self.start_conv(input)
out,for_skip1= self.down_block1(input,attention_out8,pos_encoding8)
out,for_skip2 = self.down_block1(out, attention_out7, pos_encoding7)
out,for_skip3 = self.down_block1(out, attention_out6, pos_encoding6)
out,for_skip4 = self.down_block1(out, attention_out5, pos_encoding5)
out = self.bottle_conv(out)
# print("bottle",out.shape)
out = self.up_block4(out, for_skip4, attention_out4,pos_encoding4)
out = self.up_block4(out, for_skip3, attention_out3, pos_encoding3)
out = self.up_block4(out, for_skip2, attention_out2, pos_encoding2)
out = self.up_block4(out, for_skip1, attention_out1, pos_encoding1)
out = self.final_conv(out)
return out
|