File size: 9,090 Bytes
ab9f2cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import sympy as sp
import wandb
from PIL import Image
from datasets import load_dataset
from torchvision import transforms

from down_unet import down_model
'''上面的网络需要接受三个信息,上下采样模块需要重写,两次宽高减2后接受三个信息,renet块加入时间信息,'''

class conv_block(nn.Module):    #一个下采样模块包含两个卷积层,深度channel从1-64-128-256这样[B,C,H,W]-->[B,C_DIM,H-2,W-2]
    def __init__(self,in_channel,num_heads,channel_dim,use ="down"):
        super(conv_block,self).__init__()      #in_channel输入通道数,channle_dim输出通道数,一个块减少2


        self.in_channel = in_channel
        self.num_heads = num_heads
        self.channel_dim = channel_dim
        self.use = use

        self.GN = nn.GroupNorm(num_groups=4, num_channels=in_channel)  #这个channel指的是输入通道数
        # num_groups 是组数(2,4,8)输入特征的通道分成多少组进行归一化,num_channels 是输入的通道数
        self.conv = nn.Conv2d(in_channels=in_channel, out_channels=in_channel, kernel_size=3,
                          stride=1, padding=1, bias=False)
        self.silu = nn.SiLU()
        self.attention = nn.MultiheadAttention(embed_dim=self.in_channel, num_heads=self.num_heads)

        if self.use == "down":
            self.conv1 = nn.Conv2d(in_channels=self.in_channel, out_channels=self.channel_dim, kernel_size=3,
                             stride=1, padding=0, bias=False)
        elif self.use =="up":
            self.conv1 = nn.Conv2d(in_channels=self.in_channel, out_channels=self.channel_dim, kernel_size=3,
                         stride=1, padding=2, bias=False)

    def resnet_block(self,X):    #隐藏层使用和输入一样的大小

        out = self.GN(X)
        out = self.conv(out)
        out = self.silu(out)    #这里要加入时间信息

        out = self.GN(out)
        out = self.conv(out)
        out = self.silu(out)

        return out + X

    def attention_block(self,X):

        B,C,H,W = X.size()

        out = self.GN(X)
        out = self.conv(out)

        out = out.view(B, self.in_channel, H * W).transpose(1, 2)  # 将输入重构为 [B, L, C],其中 L = H * W
        out, weights = self.attention(out, out, out)
        out = out.transpose(1, 2).view(B, self.in_channel, H, W)

        out = self.conv(out)

        return out+X

    def forward(self,X):

        out = self.resnet_block(X)
        out = self.attention_block(out)
        out = self.conv1(out)

        return out



class down_block(nn.Module):  #宽高减4,加入两个信息,然后然后除以2
    def __init__(self,in_channel,channel_dim):   #in_channel4-->channel_dim64
        super(down_block,self).__init__()

        self.channel_dim = channel_dim

        self.in_channel = in_channel

        self.block1 = conv_block(in_channel=self.in_channel,num_heads=4,
                           channel_dim=self.channel_dim,use="down")
        self.block2 = conv_block(in_channel=self.channel_dim, num_heads=4,
                                channel_dim=self.channel_dim, use="down")

        self.return_conv = nn.Conv2d(in_channels=self.channel_dim*2,out_channels=self.channel_dim,kernel_size=1,
                                     stride=1,padding=0,bias=False)

        self.attention = nn.MultiheadAttention(embed_dim=self.channel_dim, num_heads=4)

        self.down_pool = nn.Conv2d(in_channels=self.channel_dim, out_channels=self.channel_dim, kernel_size=2,
                              stride=2, padding=0, bias=False)

    def caculate_attention(self,X_q,Y_kv):

        B,C,H,W = X_q.size()

        X_q = X_q.view(B, self.channel_dim, H * W).transpose(1, 2)  # 将输入重构为 [B, L, C],其中 L = H * W
        Y_kv = Y_kv.view(B, self.channel_dim, H * W).transpose(1, 2)

        out, weights = self.attention(X_q, Y_kv, Y_kv)
        out = out.transpose(1, 2).view(B, self.channel_dim, H, W)

        return out

    def forward(self,X,attention_out,pos_encoding):  #输入[1,4,128,128],输出[1.64,124,124]-->[1,64,62,62]

        out = self.block1(X)
        for_skip_connection = self.block2(out)

        out = torch.cat((for_skip_connection,pos_encoding),dim=1)
        out = self.return_conv(out)

        out = self.caculate_attention(X_q=attention_out,Y_kv=out)

        out = self.down_pool(out)

        return out,for_skip_connection

'''

X = torch.randn(1,4,128,128)

attention_out = torch.randn(1,64,124,124)

pos_encoding = torch.randn(1,64,124,124)

model = down_block(4,64,4)

out = model(X,attention_out,pos_encoding)

print(out.shape)

'''

class up_block(nn.Module):
    def __init__(self,in_channel):  #这里的in_channel指的是cat之后的通道数
        super(up_block,self).__init__()
        self.in_channel = in_channel



        self.block1 = conv_block(in_channel=in_channel*2, num_heads=4,
                           channel_dim=in_channel,use="up")
        self.block2 = conv_block(in_channel=in_channel, num_heads=4,
                           channel_dim=in_channel,use="up")
        self.up_pool = nn.ConvTranspose2d(self.in_channel*2, self.in_channel,
                                          kernel_size=2, stride=2)

        self.return_conv = nn.Conv2d(in_channels=self.in_channel * 2, out_channels=self.in_channel, kernel_size=1,
                                     stride=1, padding=0, bias=False)

        self.attention = nn.MultiheadAttention(embed_dim=self.in_channel, num_heads=4)

    def caculate_attention(self,X_q,Y_kv):

        B,C,H,W = X_q.size()

        X_q = X_q.view(B, self.in_channel, H * W).transpose(1, 2)  # 将输入重构为 [B, L, C],其中 L = H * W
        Y_kv = Y_kv.view(B, self.in_channel, H * W).transpose(1, 2)

        out, weights = self.attention(X_q, Y_kv, Y_kv)
        out = out.transpose(1, 2).view(B, self.in_channel, H, W)

        return out

    def forward(self,input,input_skip,attention_out,pos_encoding):  #先对输入进行上采样,然后和跳跃的拼接,之后经过两个block


        after_transposed = self.up_pool(input)   #上采样得到的大小

        after_cat = torch.cat((after_transposed, input_skip), dim=1)  # 拼接张量
        after_cat = self.return_conv(after_cat)
        after_cat = torch.cat((after_cat, pos_encoding), dim=1)
        after_cat = self.return_conv(after_cat)

        out = self.caculate_attention(X_q=attention_out, Y_kv=after_cat)

        out = self.block2(out)      #通道数不用再降低了
        out = self.block2(out)

        return out

'''

X = torch.randn(1,128,62,62)

input_skip = torch.randn(1,64,124,124)

attention_out = torch.randn(1,64,124,124)

pos_encoding = torch.randn(1,64,124,124)

model = up_block(in_channel=64,num_head=4)

out = model(X,input_skip,attention_out,pos_encoding)

print(out.shape)  # torch.Size([1, 64, 128, 128])

'''

class up_model(nn.Module):
    def __init__(self):
        super(up_model,self).__init__()

        self.down_model = down_model()

        self.start_conv = nn.Conv2d(in_channels=3, out_channels=4, kernel_size=1, stride=1)

        self.down_block1 = down_block(4,64)
        self.down_block2 = down_block(64,128)
        self.down_block3 = down_block(128,256)
        self.down_block4 = down_block(256,512)

        self.bottle_conv = nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=1, stride=1)

        self.up_block4 = up_block(512)
        self.up_block3 = up_block(256)
        self.up_block2 = up_block(128)
        self.up_block1 = up_block(64)

        self.final_conv = nn.Conv2d(in_channels=64, out_channels=3, kernel_size=1, stride=1)

    def forward(self,input):   #这个地方的输入一定要除的尽

        X, attention_out1, attention_out2, attention_out3, attention_out4, attention_out5, attention_out6, attention_out7, attention_out8, pos_encoding1, pos_encoding2, pos_encoding3, pos_encoding4, pos_encoding5, pos_encoding6, pos_encoding7, pos_encoding8 =self.down_model(input)

        input = self.start_conv(input)

        out,for_skip1= self.down_block1(input,attention_out8,pos_encoding8)

        out,for_skip2 = self.down_block1(out, attention_out7, pos_encoding7)

        out,for_skip3 = self.down_block1(out, attention_out6, pos_encoding6)

        out,for_skip4 = self.down_block1(out, attention_out5, pos_encoding5)

        out = self.bottle_conv(out)
        # print("bottle",out.shape)

        out = self.up_block4(out, for_skip4, attention_out4,pos_encoding4)

        out = self.up_block4(out, for_skip3, attention_out3, pos_encoding3)

        out = self.up_block4(out, for_skip2, attention_out2, pos_encoding2)

        out = self.up_block4(out, for_skip1, attention_out1, pos_encoding1)

        out = self.final_conv(out)

        return out