File size: 15,336 Bytes
ab9f2cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import sympy as sp
import wandb
from PIL import Image
from datasets import load_dataset
from torchvision import transforms
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
# 初始化项目
wandb.init(
# set the wandb project where this run will be logged
project="unet-try",
)
'''
conv_block = resnetblock--attentionblock--convblock. input:[B,C,H,W],output:[B,channel_dim,H(+/-)2,W(+/-)2]
down block = 2blocks|-->for_skip_connection
|
down_sample-->result_after_pool. input:[B,C,H,W],output:[B,channel_dim,(H-4)//2,(W-4)//2]
up block = -->concat-->2blocks input:[B,C,H,W],input_skip:[B,C/2,2H,2W],output:[B,C/2,2H+4,2W+4]
|
--up_sample
LR-----------------------------MSE LOSS--------------------------LR
|--down block -------------skip connection-----------up block--|
|--down block up block--|
|---------------|
'''
# ----------------------------------------------------------------------------------------------------
class conv_block(nn.Module): #一个下采样模块包含两个卷积层,深度channel从1-64-128-256这样[B,C,H,W]-->[B,C_DIM,H-2,W-2]
def __init__(self,in_channel,num_heads,channel_dim,use ="down"):
super(conv_block,self).__init__() #in_channel输入通道数,channle_dim输出通道数,一个块减少2
self.in_channel = in_channel
self.num_heads = num_heads
self.channel_dim = channel_dim
self.use = use
self.GN = nn.GroupNorm(num_groups=4, num_channels=in_channel) #这个channel指的是输入通道数
# num_groups 是组数(2,4,8)输入特征的通道分成多少组进行归一化,num_channels 是输入的通道数
self.conv = nn.Conv2d(in_channels=in_channel, out_channels=in_channel, kernel_size=3,
stride=1, padding=1, bias=False)
self.silu = nn.SiLU()
self.attention = nn.MultiheadAttention(embed_dim=self.in_channel, num_heads=self.num_heads)
if self.use == "down":
self.conv1 = nn.Conv2d(in_channels=self.in_channel, out_channels=self.channel_dim, kernel_size=3,
stride=1, padding=0, bias=False)
elif self.use =="up":
self.conv1 = nn.Conv2d(in_channels=self.in_channel, out_channels=self.channel_dim, kernel_size=3,
stride=1, padding=2, bias=False)
def resnet_block(self,X): #隐藏层使用和输入一样的大小
out = self.GN(X)
out = self.conv(out)
out = self.silu(out)
out = self.GN(out)
out = self.conv(out)
out = self.silu(out)
return out + X
def attention_block(self,X):
B,C,H,W = X.size()
out = self.GN(X)
out = self.conv(out)
out = out.view(B, self.in_channel, H * W).transpose(1, 2) # 将输入重构为 [B, L, C],其中 L = H * W
out, weights = self.attention(out, out, out)
out = out.transpose(1, 2).view(B, self.in_channel, H, W)
out = self.conv(out)
return out+X
def forward(self,X):
out = self.resnet_block(X)
out = self.attention_block(out)
out = self.conv1(out)
return out
'''
model = conv_block(in_channel=4,num_heads=4,channel_dim=64,use="down")
in_put = torch.randn(1,4,256,256) #注意,在SR3代码中隐藏层是不变的和输入一致
ouput = model(in_put)
print(ouput.shape)
'''
# -------------------------------------------------------------------------------------------------
class SpatialAttention(nn.Module):
def __init__(self, in_channels):
super(SpatialAttention, self).__init__()
self.conv = nn.Conv2d(in_channels, 1, kernel_size=1)
def forward(self, x):
# Apply convolution to generate attention map
attention_map = self.conv(x)
# Generate attention scores
attention_scores = torch.softmax(attention_map, dim=1)
# Apply attention scores
out = x * attention_scores
return out
class ChannelAttention(nn.Module):
def __init__(self, in_channels, reduction_ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_channels, in_channels // reduction_ratio, bias=False),
nn.ReLU(),
nn.Linear(in_channels // reduction_ratio, in_channels, bias=False),
nn.ReLU()
)
def forward(self, x):
# Average pooling to generate a channel descriptor
avg_out = self.avg_pool(x).view(x.size(0), -1)
# Apply fully connected layers to generate channel attention
attn = self.fc(avg_out)
# Reshape attention to match the input
attn = attn.view(x.size(0), -1, 1, 1)
return x * attn
def calculate_attention(X, num_heads, use):
X = X.to(device)
B, C, H, W = X.size()
if use == "down":
# Apply channel attention
channel_attention = ChannelAttention(C).to(device)
out = channel_attention(X)
elif use == "up":
# Reshape and transpose for multi-head attention
up = X.view(B, C, H * W).transpose(1, 2)
spatial_attention = nn.MultiheadAttention(embed_dim=C, num_heads=num_heads).to(device)
out, weights = spatial_attention(up, up, up)
# Apply spatial attention on upsampled output
out = out.transpose(1, 2).view(B, C, H,W)
spatial_attention_module = SpatialAttention(in_channels=C).to(device)
out = spatial_attention_module(out)
# Reshape output to match the original input dimensions
return out
'''
# Example usage
X = torch.randn(1,4,572,572) # Example input tensor
num_heads = 4
attention_out = calculate_attention(X, num_heads,use="up")
print("attention out",attention_out.shape)
'''
'''
X = torch.randn(1, 64, 254, 254)
output = calculate_attention(X,num_heads=8)
print("attention", output.shape) # 应该输出 torch.Size([1, 64, 254, 254])
'''
# -----------------------------------------------------------------------------------
def generate_positional_encoding(X):
X = X.to(device)
B,C,H,W = X.size()
# 初始化位置编码矩阵
pos_encoding = torch.zeros(B, C, H, W)
# 计算位置索引
y_positions = torch.arange(0, H, dtype=torch.float32).unsqueeze(1).repeat(1, W) #[H,W]
x_positions = torch.arange(0, W, dtype=torch.float32).unsqueeze(0).repeat(H, 1)
# 将位置索引除以尺度以进行缩放
y_positions = y_positions / (H ** 0.5)
x_positions = x_positions / (W ** 0.5)
# 计算位置编码的正弦和余弦值
for i in range(0, C, 2):
pos_encoding[:, i, :, :] = torch.sin(x_positions)
pos_encoding[:, i + 1, :, :] = torch.cos(y_positions)
return pos_encoding
'''
X = torch.randn(1,128, 512, 512)
# 计算位置编码
pos_encoding = generate_positional_encoding(X)
print("Positional Encoding shape:", pos_encoding.shape) # 应该输出 torch.Size([1, 64, 254, 254])
'''
class down_block(nn.Module): #宽高减4,然后除以2
def __init__(self,in_channel,channel_dim):
super(down_block,self).__init__()
self.channel_dim = channel_dim
self.block1 = conv_block(in_channel=in_channel,num_heads=4,
channel_dim=self.channel_dim,use="down")
self.block2 = conv_block(in_channel=self.channel_dim, num_heads=4,
channel_dim=self.channel_dim, use="down")
self.down_pool = nn.Conv2d(in_channels=self.channel_dim, out_channels=self.channel_dim, kernel_size=2,
stride=2, padding=0, bias=False)
def forward(self,X): #输入[1,4,128,128],输出[1.64,124,124]-->[1,64,62,62]
out = self.block1(X)
for_skip_connection = self.block2(out) #这个out用于跳跃连接的
result_after_pool = self.down_pool(for_skip_connection)
return result_after_pool,for_skip_connection
'''
model1 = down_block(in_channel=64,channel_dim=128)
input = torch.randn(1,64,284,284)
res,out = model1(input)
print(res.shape,out.shape)
'''
# --------------------------------------------------------------------------------------------------
class up_block(nn.Module):
def __init__(self,in_channel):
super(up_block,self).__init__()
self.in_channel = in_channel
self.block1 = conv_block(in_channel=in_channel*2, num_heads=4,
channel_dim=in_channel,use="up")
self.block2 = conv_block(in_channel=in_channel, num_heads=4,
channel_dim=in_channel,use="up")
self.up_pool = nn.ConvTranspose2d(self.in_channel*2, self.in_channel,
kernel_size=2, stride=2)
def forward(self,input,input_skip): #先对输入进行上采样,然后和跳跃的拼接,之后经过两个block
after_transposed = self.up_pool(input) #上采样得到的大小
after_cat = torch.cat((after_transposed, input_skip), dim=1) # 拼接张量
out = self.block1(after_cat)
out = self.block2(out)
return out,after_transposed
'''
model2 = up_block(in_channel=128)
input = torch.randn(1,256,140,140)
input_skip = torch.randn(1,128,280,280)
out,after = model2(input,input_skip)
print("up block",out.shape) #torch.Size([1, 128, 284, 284])
'''
class down_model(nn.Module):
def __init__(self):
super(down_model,self).__init__()
self.start_conv = nn.Conv2d(in_channels=3, out_channels=4, kernel_size=1, stride=1)
self.down_block1 = down_block(4,64)
self.down_block2 = down_block(64,128)
self.down_block3 = down_block(128,256)
self.down_block4 = down_block(256,512)
self.bottle_conv = nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=1, stride=1)
self.up_block4 = up_block(512)
self.up_block3 = up_block(256)
self.up_block2 = up_block(128)
self.up_block1 = up_block(64)
self.final_conv = nn.Conv2d(in_channels=64, out_channels=3, kernel_size=1, stride=1)
def forward(self,input): #这个地方的输入一定要除的尽
input = self.start_conv(input)
result_after_pool1, for_skip_connection1 = self.down_block1(input)
attention_out1 = calculate_attention(for_skip_connection1, num_heads=4, use="down")
pos_encoding1 = generate_positional_encoding(for_skip_connection1)
# print("1",result_after_pool1.shape,for_skip_connection1.shape)
result_after_pool2, for_skip_connection2 = self.down_block2(result_after_pool1)
attention_out2 = calculate_attention(for_skip_connection2, num_heads=4, use="down")
pos_encoding2 = generate_positional_encoding(for_skip_connection2)
# print("2",result_after_pool2.shape, for_skip_connection2.shape)
result_after_pool3, for_skip_connection3 = self.down_block3(result_after_pool2)
attention_out3 = calculate_attention(for_skip_connection3, num_heads=4, use="down")
pos_encoding3 = generate_positional_encoding(for_skip_connection3)
# print("3",result_after_pool3.shape, for_skip_connection3.shape)
result_after_pool4, for_skip_connection4 = self.down_block4(result_after_pool3)
attention_out4 = calculate_attention(for_skip_connection4, num_heads=4, use="down")
pos_encoding4 = generate_positional_encoding(for_skip_connection4)
# print("4",result_after_pool4.shape, for_skip_connection4.shape)
result_after_pool4 = self.bottle_conv(result_after_pool4)
# print("bottle",result_after_pool4.shape)
out, after_transposed1 = self.up_block4(result_after_pool4, for_skip_connection4)
attention_out5 = calculate_attention(after_transposed1, num_heads=4, use="up")
pos_encoding5 = generate_positional_encoding(after_transposed1)
# print("5",out.shape,after_transposed1.shape)
out, after_transposed2 = self.up_block3(out, for_skip_connection3)
attention_out6 = calculate_attention(after_transposed2, num_heads=4, use="up").to(device)
pos_encoding6 = generate_positional_encoding(after_transposed2).to(device)
# print("6",out.shape, after_transposed2.shape)
out, after_transposed3 = self.up_block2(out, for_skip_connection2)
attention_out7 = calculate_attention(after_transposed3, num_heads=4, use="up").to(device)
pos_encoding7 = generate_positional_encoding(after_transposed3).to(device)
# print("7",out.shape, after_transposed3.shape)
out, after_transposed4 = self.up_block1(out, for_skip_connection1)
attention_out8 = calculate_attention(after_transposed4, num_heads=4, use="up").to(device)
pos_encoding8 = generate_positional_encoding(after_transposed4).to(device)
# print("8",out.shape, after_transposed4.shape)
out = self.final_conv(out)
return out,attention_out1,attention_out2,attention_out3,attention_out4,attention_out5,attention_out6,attention_out7,attention_out8,pos_encoding1,pos_encoding2,pos_encoding3,pos_encoding4,pos_encoding5,pos_encoding6,pos_encoding7,pos_encoding8
'''
all_model = model()
input = torch.randn(1,4,1024,1024)
output = all_model(input)
print(output.shape)
'''
all_model = down_model().to(device)
loss_function = nn.MSELoss().to(device) #2.定义loss
optimizer = torch.optim.Adam(all_model.parameters(),lr=1e-6) #3.定义优化器
epoch = 3
batch_size = 10
image_size = 268 #【10,3,268,268】
ds = load_dataset("bitmind/ffhq-256",split="train")
preprocess = transforms.Compose(
[
transforms.Resize((image_size, image_size)), # Resize
transforms.RandomHorizontalFlip(), # Randomly flip (data augmentation)
transforms.ToTensor(), # Convert to tensor (0, 1)
transforms.Normalize([0.5], [0.5]), # Map to (-1, 1)
]
)
def transform(examples):
images = [preprocess(image.convert("RGB")) for image in examples["image"]]
return {"images": images}
ds.set_transform(transform)
dataloader = torch.utils.data.DataLoader(ds,batch_size=batch_size,shuffle=True)
for i in range(epoch):
for idx, batch_x in enumerate(dataloader):
images = batch_x["images"].to(device)
# print(images.shape) #(4,3,572,572)
output = all_model(images).to(device)
loss = loss_function(output, images)
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(all_model.parameters(), 1.)
optimizer.step()
print("epoch:", i, "loss:", loss.item())
wandb.log({'epoch': i,"batch:": idx,'loss':loss})
#torch.save(model.state_dict(), 'model_weights.pth')
|