Obazda3 / README.md
johannhartmann's picture
Update README.md
86b4d64 verified
---
tags:
- merge
- mergekit
- lazymergekit
- johannhartmann/Wiedervereinigung-WIP
- yam-peleg/Experiment26-7B
base_model:
- johannhartmann/Wiedervereinigung-WIP
- yam-peleg/Experiment26-7B
---
# Obazda3
An experiment to benchmark slerp vs dare_ties for multilingual models.
Obazda3 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [johannhartmann/Wiedervereinigung-WIP](https://huggingface.co/johannhartmann/Wiedervereinigung-WIP)
* [yam-peleg/Experiment26-7B](https://huggingface.co/yam-peleg/Experiment26-7B)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: johannhartmann/Wiedervereinigung-WIP
layer_range: [0, 32]
- model: yam-peleg/Experiment26-7B
layer_range: [0, 32]
merge_method: slerp
base_model: johannhartmann/Wiedervereinigung-WIP
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
tokenizer_source: base
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "johannhartmann/Obazda3"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```