metadata
tags:
- merge
- mergekit
- lazymergekit
- FelixChao/Capricorn-7B-DPO
- mayflowergmbh/Wiedervereinigung-7b-dpo-laser
- cognitivecomputations/openchat-3.5-0106-laser
base_model:
- FelixChao/Capricorn-7B-DPO
- mayflowergmbh/Wiedervereinigung-7b-dpo-laser
- cognitivecomputations/openchat-3.5-0106-laser
Brezn-7B
Brezn-7B is a merge of the following models using LazyMergekit:
- FelixChao/Capricorn-7B-DPO
- mayflowergmbh/Wiedervereinigung-7b-dpo-laser
- cognitivecomputations/openchat-3.5-0106-laser
🧩 Configuration
models:
- model: mistralai/Mistral-7B-v0.1
# no parameters necessary for base model
- model: FelixChao/Capricorn-7B-DPO
parameters:
density: 0.60
weight: 0.30
- model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
parameters:
density: 0.65
weight: 0.40
- model: cognitivecomputations/openchat-3.5-0106-laser
parameters:
density: 0.6
weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "johannhartmann/Brezn-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])