File size: 7,331 Bytes
bc6498b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/env python3
"""Real LLM compression and energy test - Phase 4"""
import time
import json
import torch
import numpy as np
import psutil
import os

def get_model_size(model):
    """Calculate actual model size in memory"""
    param_size = 0
    for param in model.parameters():
        param_size += param.nelement() * param.element_size()
    
    buffer_size = 0
    for buffer in model.buffers():
        buffer_size += buffer.nelement() * buffer.element_size()
    
    return (param_size + buffer_size) / 1024 / 1024  # MB

def measure_inference_speed(model, tokenizer, prompts, device='cpu'):
    """Measure actual inference speed"""
    model.eval()
    total_tokens = 0
    
    start_time = time.time()
    with torch.no_grad():
        for prompt in prompts:
            inputs = tokenizer(prompt, return_tensors='pt', padding=True).to(device)
            outputs = model.generate(
                **inputs,
                max_new_tokens=20,
                do_sample=False,
                pad_token_id=tokenizer.pad_token_id
            )
            total_tokens += outputs.shape[1]
    
    inference_time = time.time() - start_time
    return {
        'total_tokens': total_tokens,
        'time_seconds': inference_time,
        'tokens_per_second': total_tokens / inference_time
    }

def run_real_compression_test():
    """Run actual model compression test"""
    print("="*70)
    print(" "*20 + "REAL LLM COMPRESSION TEST")
    print("="*70)
    
    # Use a smaller model that will actually download
    from transformers import AutoTokenizer, AutoModelForCausalLM
    
    model_name = "distilgpt2"  # 82M params, ~320MB
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    
    print(f"\n📥 Loading {model_name} model...")
    print(f"Device: {device}")
    
    # Test prompts
    test_prompts = [
        "The future of artificial intelligence is",
        "Quantum computers will revolutionize",
        "Energy efficiency in computing means",
        "Machine learning algorithms can",
        "The next breakthrough in technology"
    ]
    
    results = {}
    
    # 1. Baseline FP32 Model
    print("\n🔵 Testing FP32 baseline model...")
    model_fp32 = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float32
    ).to(device)
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    tokenizer.pad_token = tokenizer.eos_token
    
    fp32_size = get_model_size(model_fp32)
    fp32_speed = measure_inference_speed(model_fp32, tokenizer, test_prompts, device)
    
    results['fp32'] = {
        'size_mb': fp32_size,
        'dtype': 'float32',
        **fp32_speed
    }
    
    del model_fp32
    if device == 'cuda':
        torch.cuda.empty_cache()
    
    # 2. FP16 Model
    print("\n🟢 Testing FP16 model...")
    model_fp16 = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float16
    ).to(device)
    
    fp16_size = get_model_size(model_fp16)
    fp16_speed = measure_inference_speed(model_fp16, tokenizer, test_prompts, device)
    
    results['fp16'] = {
        'size_mb': fp16_size,
        'dtype': 'float16',
        **fp16_speed
    }
    
    del model_fp16
    if device == 'cuda':
        torch.cuda.empty_cache()
    
    # 3. INT8 Quantization (simulated via torch.quantization)
    print("\n🟡 Testing INT8 quantized model...")
    model_int8 = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float32
    )
    
    # Dynamic quantization
    model_int8 = torch.quantization.quantize_dynamic(
        model_int8,
        {torch.nn.Linear},
        dtype=torch.qint8
    )
    
    int8_size = get_model_size(model_int8)
    int8_speed = measure_inference_speed(model_int8, tokenizer, test_prompts, 'cpu')  # INT8 on CPU
    
    results['int8'] = {
        'size_mb': int8_size,
        'dtype': 'int8',
        **int8_speed
    }
    
    # Calculate improvements
    results['compression_ratios'] = {
        'fp32_to_fp16': results['fp32']['size_mb'] / results['fp16']['size_mb'],
        'fp32_to_int8': results['fp32']['size_mb'] / results['int8']['size_mb'],
        'fp16_to_int8': results['fp16']['size_mb'] / results['int8']['size_mb']
    }
    
    results['speedup_ratios'] = {
        'fp16_vs_fp32': results['fp16']['tokens_per_second'] / results['fp32']['tokens_per_second'],
        'int8_vs_fp32': results['int8']['tokens_per_second'] / results['fp32']['tokens_per_second']
    }
    
    # Energy estimation (based on time and model size)
    # Simplified: Energy ∝ time × model_size
    baseline_energy = results['fp32']['time_seconds'] * results['fp32']['size_mb']
    fp16_energy = results['fp16']['time_seconds'] * results['fp16']['size_mb']
    int8_energy = results['int8']['time_seconds'] * results['int8']['size_mb']
    
    results['energy_estimates'] = {
        'fp32_relative': 1.0,
        'fp16_relative': fp16_energy / baseline_energy,
        'int8_relative': int8_energy / baseline_energy,
        'fp16_reduction_percent': (1 - fp16_energy / baseline_energy) * 100,
        'int8_reduction_percent': (1 - int8_energy / baseline_energy) * 100
    }
    
    # Check acceptance criteria
    results['acceptance_criteria'] = {
        'compression_4x': max(results['compression_ratios'].values()) >= 4.0,
        'energy_reduction_40': max(
            results['energy_estimates']['fp16_reduction_percent'],
            results['energy_estimates']['int8_reduction_percent']
        ) >= 40.0,
        'criteria_met': False
    }
    
    results['acceptance_criteria']['criteria_met'] = (
        results['acceptance_criteria']['compression_4x'] or 
        results['acceptance_criteria']['energy_reduction_40']
    )
    
    return results

if __name__ == "__main__":
    print("\n🔬 Starting REAL LLM Compression Test...")
    
    # Run the test
    results = run_real_compression_test()
    
    # Display results
    print("\n" + "="*70)
    print(" "*25 + "RESULTS")
    print("="*70)
    
    print("\n📊 Model Sizes:")
    for dtype in ['fp32', 'fp16', 'int8']:
        if dtype in results:
            print(f"  {dtype:5}: {results[dtype]['size_mb']:>8.1f} MB")
    
    print("\n⚡ Inference Speed:")
    for dtype in ['fp32', 'fp16', 'int8']:
        if dtype in results:
            print(f"  {dtype:5}: {results[dtype]['tokens_per_second']:>8.1f} tokens/sec")
    
    print("\n📉 Compression Ratios:")
    for key, value in results['compression_ratios'].items():
        print(f"  {key}: {value:.2f}x")
    
    print("\n🔋 Energy Reduction Estimates:")
    print(f"  FP16: {results['energy_estimates']['fp16_reduction_percent']:.1f}%")
    print(f"  INT8: {results['energy_estimates']['int8_reduction_percent']:.1f}%")
    
    print("\n✅ Acceptance Criteria:")
    print(f"  4x Compression: {'PASS' if results['acceptance_criteria']['compression_4x'] else 'FAIL'}")
    print(f"  40% Energy Reduction: {'PASS' if results['acceptance_criteria']['energy_reduction_40'] else 'FAIL'}")
    
    # Save results
    os.makedirs("phase4_outputs", exist_ok=True)
    with open("phase4_outputs/real_llm_results.json", "w") as f:
        json.dump(results, f, indent=2)
    
    print(f"\n💾 Results saved to phase4_outputs/real_llm_results.json")
    print("="*70)