File size: 3,062 Bytes
5245e14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-large-finetuned-augument-visquad2-27-3-2023-3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-large-finetuned-augument-visquad2-27-3-2023-3

This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Best F1: 75.3631
- Loss: 2.0450
- Exact: 38.9165
- F1: 56.3720
- Total: 3821
- Hasans Exact: 55.9744
- Hasans F1: 81.1148
- Hasans Total: 2653
- Noans Exact: 0.1712
- Noans F1: 0.1712
- Noans Total: 1168
- Best Exact: 59.7749
- Best Exact Thresh: 0.5183
- Best F1 Thresh: 0.8690

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Best F1 | Validation Loss | Exact   | F1      | Total | Hasans Exact | Hasans F1 | Hasans Total | Noans Exact | Noans F1 | Noans Total | Best Exact | Best Exact Thresh | Best F1 Thresh |
|:-------------:|:-----:|:-----:|:-------:|:---------------:|:-------:|:-------:|:-----:|:------------:|:---------:|:------------:|:-----------:|:--------:|:-----------:|:----------:|:-----------------:|:--------------:|
| 0.8597        | 1.0   | 4221  | 66.4890 | 1.2255          | 36.1947 | 54.1414 | 3821  | 52.1297      | 77.9775   | 2653         | 0.0         | 0.0      | 1168        | 52.9704    | 0.8158            | 0.9074         |
| 0.4623        | 2.0   | 8443  | 70.0050 | 1.1813          | 37.8173 | 55.5970 | 3821  | 54.4666      | 80.0740   | 2653         | 0.0         | 0.0      | 1168        | 55.1950    | 0.7529            | 0.8275         |
| 0.2999        | 3.0   | 12664 | 75.0810 | 1.2417          | 39.8587 | 56.3329 | 3821  | 57.3690      | 81.0961   | 2653         | 0.0856      | 0.0856   | 1168        | 60.4030    | 0.9294            | 0.9459         |
| 0.1915        | 4.0   | 16886 | 74.7037 | 1.6500          | 38.7333 | 56.2476 | 3821  | 55.7482      | 80.9733   | 2653         | 0.0856      | 0.0856   | 1168        | 58.6496    | 0.7690            | 0.9767         |
| 0.1185        | 5.0   | 21105 | 75.3631 | 2.0450          | 38.9165 | 56.3720 | 3821  | 55.9744      | 81.1148   | 2653         | 0.1712      | 0.1712   | 1168        | 59.7749    | 0.5183            | 0.8690         |


### Framework versions

- Transformers 4.27.3
- Pytorch 1.13.1+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2