|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: distilBert_NER_finer |
|
results: [] |
|
datasets: |
|
- nlpaueb/finer-139 |
|
language: |
|
- en |
|
pipeline_tag: token-classification |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilBert_NER_finer |
|
|
|
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the [Finer-139](https://huggingface.co/datasets/nlpaueb/finer-139) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0198 |
|
- Precision: 0.9445 |
|
- Recall: 0.9640 |
|
- F1: 0.9541 |
|
- Accuracy: 0.9954 |
|
|
|
|
|
## Training and evaluation data |
|
|
|
The training data consists of the 4 most widely available ner_tags from the Finer-139 dataset. The training and the test data were curated from this source accordingly |
|
|
|
## Prediction procedure |
|
``` |
|
from transformers import TAutoTokenizer |
|
from optimum.onnxruntime import ORTModelForTokenClassification |
|
import torch |
|
|
|
def onnx_inference(checkpoint, test_data, export=False): |
|
test_text = " ".join(test_data['tokens']) |
|
print("Test Text: " + test_text) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
|
model = ORTModelForTokenClassification.from_pretrained(checkpoint, export=export) |
|
|
|
inputs = tokenizer(test_text, return_tensors="pt") |
|
outputs = model(**inputs).logits |
|
|
|
predictions = torch.argmax(outputs, dim=2) |
|
|
|
# Convert each tensor element to a scalar before calling .item() |
|
predicted_token_class = [label_list[int(t)] for t in predictions[0]] |
|
ner_tags = [label_list[int(t)] for t in test_data['ner_tags']] |
|
|
|
print("Original Tags: ") |
|
print(ner_tags) |
|
print("Predicted Tags: ") |
|
print(predicted_token_class) |
|
|
|
onnx_model_path = "" #add the path |
|
|
|
onnx_inference(onnx_model_path, test_data) |
|
|
|
""" |
|
Here the test_data should contain "tokens" and "ner_tags". This can be of type Dataset. |
|
""" |
|
|
|
``` |
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0034 | 1.0 | 1620 | 0.0261 | 0.9167 | 0.9668 | 0.9411 | 0.9941 | |
|
| 0.0031 | 2.0 | 3240 | 0.0182 | 0.9471 | 0.9651 | 0.9561 | 0.9956 | |
|
| 0.0012 | 3.0 | 4860 | 0.0198 | 0.9445 | 0.9640 | 0.9541 | 0.9954 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |