File size: 17,411 Bytes
9acf1fc
 
 
fad3b10
 
9acf1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fad3b10
 
9acf1fc
 
 
 
 
 
fad3b10
9acf1fc
 
 
 
 
fad3b10
 
 
 
 
 
9acf1fc
 
fad3b10
9acf1fc
 
 
 
 
 
 
fad3b10
 
 
 
 
 
 
9acf1fc
 
 
fad3b10
9acf1fc
 
 
fad3b10
9acf1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
fad3b10
9acf1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fad3b10
9acf1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fad3b10
 
9acf1fc
fad3b10
9acf1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fad3b10
9acf1fc
 
 
 
fad3b10
9acf1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fad3b10
 
 
9acf1fc
 
 
 
fad3b10
 
9acf1fc
 
 
 
fad3b10
9acf1fc
fad3b10
9acf1fc
 
 
 
 
 
 
fad3b10
9acf1fc
 
 
 
 
 
 
fad3b10
 
9acf1fc
fad3b10
9acf1fc
fad3b10
 
9acf1fc
fad3b10
9acf1fc
fad3b10
 
9acf1fc
 
fad3b10
9acf1fc
 
fad3b10
9acf1fc
 
 
fad3b10
9acf1fc
 
 
 
fad3b10
9acf1fc
 
 
 
 
 
 
 
 
 
 
 
 
fad3b10
9acf1fc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import math
import struct
import inspect
import time

from .LMConfig import LMConfig
from typing import Any, Optional, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        return output * self.weight


def precompute_pos_cis(dim: int, end: int, theta: float = 10000.0):
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    t = torch.arange(end, device=freqs.device)  # type: ignore
    freqs = torch.outer(t, freqs).float()  # type: ignore
    pos_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64
    return pos_cis


def apply_rotary_emb(xq, xk, pos_cis):
    def unite_shape(pos_cis, x):
        ndim = x.ndim
        assert 0 <= 1 < ndim
        assert pos_cis.shape == (x.shape[1], x.shape[-1])
        shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
        return pos_cis.view(*shape)

    xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
    xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
    pos_cis = unite_shape(pos_cis, xq_)
    xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3)
    xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
    return xq_out.type_as(xq), xk_out.type_as(xk)


def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
    """torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
    bs, slen, n_kv_heads, head_dim = x.shape
    if n_rep == 1:
        return x
    return (
        x[:, :, :, None, :]
        .expand(bs, slen, n_kv_heads, n_rep, head_dim)
        .reshape(bs, slen, n_kv_heads * n_rep, head_dim)
    )


class Attention(nn.Module):
    def __init__(self, args: LMConfig):
        super().__init__()
        self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
        assert args.n_heads % self.n_kv_heads == 0
        self.n_local_heads = args.n_heads
        self.n_local_kv_heads = self.n_kv_heads
        self.n_rep = self.n_local_heads // self.n_local_kv_heads
        self.head_dim = args.dim // args.n_heads
        self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
        self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
        self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
        self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
        self.k_cache, self.v_cache = None, None
        self.attn_dropout = nn.Dropout(args.dropout)
        self.resid_dropout = nn.Dropout(args.dropout)
        self.dropout = args.dropout
        self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn

        # print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
        mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
        mask = torch.triu(mask, diagonal=1)
        self.register_buffer("mask", mask)

    def forward(self, x: torch.Tensor, pos_cis: torch.Tensor, kv_cache=False):
        bsz, seqlen, _ = x.shape

        xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)

        xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
        xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)

        xq, xk = apply_rotary_emb(xq, xk, pos_cis)

        # 更高效的kv_cache实现
        if kv_cache and self.eval():
            if seqlen == 1 and all(cache is not None for cache in (self.k_cache, self.v_cache)):
                xk = torch.cat((self.k_cache, xk), dim=1)
                xv = torch.cat((self.v_cache, xv), dim=1)
            self.k_cache, self.v_cache = xk, xv

        xk = repeat_kv(xk, self.n_rep)  # (bs, seqlen, n_local_heads, head_dim)
        xv = repeat_kv(xv, self.n_rep)  # (bs, seqlen, n_local_heads, head_dim)

        xq = xq.transpose(1, 2)
        xk = xk.transpose(1, 2)
        xv = xv.transpose(1, 2)

        if self.flash and seqlen != 1:
            output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None,
                                                                      dropout_p=self.dropout if self.training else 0.0,
                                                                      is_causal=True)
        else:
            scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
            scores = scores + self.mask[:, :, :seqlen, :seqlen]  # (bs, n_local_heads, seqlen, cache_len + seqlen)
            scores = F.softmax(scores.float(), dim=-1).type_as(xq)
            scores = self.attn_dropout(scores)
            output = torch.matmul(scores, xv)  # (bs, n_local_heads, seqlen, head_dim)

        output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)

        output = self.wo(output)
        output = self.resid_dropout(output)
        return output


class FeedForward(nn.Module):
    def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float):
        super().__init__()
        if hidden_dim is None:
            hidden_dim = 4 * dim
            hidden_dim = int(2 * hidden_dim / 3)
            hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
        self.w1 = nn.Linear(dim, hidden_dim, bias=False)
        self.w2 = nn.Linear(hidden_dim, dim, bias=False)
        self.w3 = nn.Linear(dim, hidden_dim, bias=False)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))


class MoEGate(nn.Module):
    def __init__(self, config: LMConfig):
        super().__init__()
        self.config = config
        self.top_k = config.num_experts_per_tok
        self.n_routed_experts = config.n_routed_experts

        self.scoring_func = config.scoring_func
        self.alpha = config.aux_loss_alpha
        self.seq_aux = config.seq_aux

        self.norm_topk_prob = config.norm_topk_prob
        self.gating_dim = config.dim
        self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
        self.reset_parameters()

    def reset_parameters(self) -> None:
        import torch.nn.init as init
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))

    def forward(self, hidden_states):
        bsz, seq_len, h = hidden_states.shape

        hidden_states = hidden_states.view(-1, h)
        logits = F.linear(hidden_states, self.weight, None)
        if self.scoring_func == 'softmax':
            scores = logits.softmax(dim=-1)
        else:
            raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')

        topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)

        if self.top_k > 1 and self.norm_topk_prob:
            denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
            topk_weight = topk_weight / denominator

        if self.training and self.alpha > 0.0:
            scores_for_aux = scores
            aux_topk = self.top_k
            topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
            if self.seq_aux:
                scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
                ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
                ce.scatter_add_(1, topk_idx_for_aux_loss,
                                torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(
                    seq_len * aux_topk / self.n_routed_experts)
                aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha
            else:
                mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
                ce = mask_ce.float().mean(0)
                Pi = scores_for_aux.mean(0)
                fi = ce * self.n_routed_experts
                aux_loss = (Pi * fi).sum() * self.alpha
        else:
            aux_loss = None
        return topk_idx, topk_weight, aux_loss


class MOEFeedForward(nn.Module):
    def __init__(self, config: LMConfig):
        super().__init__()
        self.config = config
        self.experts = nn.ModuleList([
            FeedForward(
                dim=config.dim,
                hidden_dim=config.hidden_dim,
                multiple_of=config.multiple_of,
                dropout=config.dropout,
            )
            for _ in range(config.n_routed_experts)
        ])

        self.gate = MoEGate(config)
        if config.n_shared_experts is not None:
            self.shared_experts = FeedForward(
                dim=config.dim,
                hidden_dim=config.hidden_dim,
                multiple_of=config.multiple_of,
                dropout=config.dropout,
            )

    def forward(self, x):
        identity = x
        orig_shape = x.shape
        bsz, seq_len, _ = x.shape

        # 使用门控机制选择专家
        topk_idx, topk_weight, aux_loss = self.gate(x)

        x = x.view(-1, x.shape[-1])
        flat_topk_idx = topk_idx.view(-1)

        if self.training:
            # 训练模式下,重复输入数据
            x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
            y = torch.empty_like(x, dtype=torch.float16)
            for i, expert in enumerate(self.experts):
                y[flat_topk_idx == i] = expert(x[flat_topk_idx == i])
            y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
            y = y.view(*orig_shape)
        else:
            # 推理模式下,只选择最优专家
            y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)

        if self.config.n_shared_experts is not None:
            y = y + self.shared_experts(identity)

        return y

    @torch.no_grad()
    def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
        expert_cache = torch.zeros_like(x)
        idxs = flat_expert_indices.argsort()
        tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
        token_idxs = idxs // self.config.num_experts_per_tok
        # 例如当tokens_per_expert=[6, 15, 20, 26, 33, 38, 46, 52]
        # 当token_idxs=[3, 7, 19, 21, 24, 25,  4,  5,  6, 10, 11, 12...]
        # 意味着当token_idxs[:6] -> [3,  7, 19, 21, 24, 25,  4]位置的token都由专家0处理,token_idxs[6:15]位置的token都由专家1处理......
        for i, end_idx in enumerate(tokens_per_expert):
            start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
            if start_idx == end_idx:
                continue
            expert = self.experts[i]
            exp_token_idx = token_idxs[start_idx:end_idx]
            expert_tokens = x[exp_token_idx]
            expert_out = expert(expert_tokens)
            expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
            # 使用 scatter_add_ 进行 sum 操作
            expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)

        return expert_cache


class TransformerBlock(nn.Module):
    def __init__(self, layer_id: int, args: LMConfig):
        super().__init__()
        self.n_heads = args.n_heads
        self.dim = args.dim
        self.head_dim = args.dim // args.n_heads
        self.attention = Attention(args)

        self.layer_id = layer_id
        self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
        self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)

        if args.use_moe:
            self.feed_forward = MOEFeedForward(args)
        else:
            self.feed_forward = FeedForward(
                dim=args.dim,
                hidden_dim=args.hidden_dim,
                multiple_of=args.multiple_of,
                dropout=args.dropout,
            )

    def forward(self, x, pos_cis, kv_cache=False):
        h = x + self.attention(self.attention_norm(x), pos_cis, kv_cache)
        out = h + self.feed_forward(self.ffn_norm(h))
        return out


class Transformer(PreTrainedModel):
    config_class = LMConfig
    last_loss: Optional[torch.Tensor]

    def __init__(self, params: LMConfig = None):
        super().__init__(params)
        if not params:
            params = LMConfig()
        self.params = params
        self.vocab_size = params.vocab_size
        self.n_layers = params.n_layers

        self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
        self.dropout = nn.Dropout(params.dropout)
        self.layers = torch.nn.ModuleList()
        for layer_id in range(self.n_layers):
            self.layers.append(TransformerBlock(layer_id, params))
        self.norm = RMSNorm(params.dim, eps=params.norm_eps)
        self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
        self.tok_embeddings.weight = self.output.weight
        pos_cis = precompute_pos_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len)
        self.register_buffer("pos_cis", pos_cis, persistent=False)

        self.apply(self._init_weights)

        for pn, p in self.named_parameters():
            if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * params.n_layers))

        self.last_loss = None
        self.OUT = CausalLMOutputWithPast()

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, tokens: Optional[torch.Tensor] = None, targets: Optional[torch.Tensor] = None,

                kv_cache=False, **keyargs):
        current_idx = 0
        if 'input_ids' in keyargs:
            tokens = keyargs['input_ids']
        if 'attention_mask' in keyargs:
            targets = keyargs['attention_mask']
        if 'current_idx' in keyargs:
            current_idx = int(keyargs['current_idx'])

        _bsz, seqlen = tokens.shape
        h = self.tok_embeddings(tokens)
        h = self.dropout(h)
        pos_cis = self.pos_cis[current_idx:current_idx + seqlen]
        for idx, layer in enumerate(self.layers):
            h = layer(h, pos_cis, kv_cache)

        h = self.norm(h)

        if targets is not None:
            logits = self.output(h)
            self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            logits = self.output(h[:, [-1], :])
            self.last_loss = None

        self.OUT.__setitem__('logits', logits)
        self.OUT.__setitem__('last_loss', self.last_loss)
        return self.OUT

    @torch.inference_mode()
    def generate(self, idx, eos, max_new_tokens, temperature=0.7, top_k=8, stream=True, rp=1., kv_cache=True):
        # rp: repetition_penalty
        index = idx.shape[1]
        init_inference = True
        while idx.shape[1] < max_new_tokens - 1:
            if init_inference or not kv_cache:
                inference_res, init_inference = self(idx, kv_cache=kv_cache), False
            else:
                inference_res = self(idx[:, -1:], kv_cache=kv_cache, current_idx=idx.shape[1] - 1)

            logits = inference_res.logits
            logits = logits[:, -1, :]

            for token in set(idx.tolist()[0]):
                logits[:, token] /= rp

            if temperature == 0.0:
                _, idx_next = torch.topk(logits, k=1, dim=-1)
            else:
                logits = logits / temperature
                if top_k is not None:
                    v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                    logits[logits < v[:, [-1]]] = -float('Inf')

                probs = F.softmax(logits, dim=-1)
                idx_next = torch.multinomial(probs, num_samples=1, generator=None)

            if idx_next == eos:
                break

            idx = torch.cat((idx, idx_next), dim=1)
            if stream:
                yield idx[:, index:]

        if not stream:
            yield idx[:, index:]

    @torch.inference_mode()
    def eval_answer(self, idx):
        idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:]
        inference_res = self(idx_cond)
        logits = inference_res.logits
        logits = logits[:, -1, :]
        return logits