|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- finetuner |
|
- mteb |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
datasets: |
|
- jinaai/negation-dataset |
|
language: en |
|
license: apache-2.0 |
|
model-index: |
|
- name: jina-embedding-s-en-v1 |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 64.82089552238806 |
|
- type: ap |
|
value: 27.100981946230778 |
|
- type: f1 |
|
value: 58.3354886367184 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 64.282775 |
|
- type: ap |
|
value: 60.350688924943796 |
|
- type: f1 |
|
value: 62.06346948494396 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 30.623999999999995 |
|
- type: f1 |
|
value: 29.427789186742153 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 22.119 |
|
- type: map_at_10 |
|
value: 35.609 |
|
- type: map_at_100 |
|
value: 36.935 |
|
- type: map_at_1000 |
|
value: 36.957 |
|
- type: map_at_3 |
|
value: 31.046000000000003 |
|
- type: map_at_5 |
|
value: 33.574 |
|
- type: mrr_at_1 |
|
value: 22.404 |
|
- type: mrr_at_10 |
|
value: 35.695 |
|
- type: mrr_at_100 |
|
value: 37.021 |
|
- type: mrr_at_1000 |
|
value: 37.043 |
|
- type: mrr_at_3 |
|
value: 31.093 |
|
- type: mrr_at_5 |
|
value: 33.635999999999996 |
|
- type: ndcg_at_1 |
|
value: 22.119 |
|
- type: ndcg_at_10 |
|
value: 43.566 |
|
- type: ndcg_at_100 |
|
value: 49.370000000000005 |
|
- type: ndcg_at_1000 |
|
value: 49.901 |
|
- type: ndcg_at_3 |
|
value: 34.06 |
|
- type: ndcg_at_5 |
|
value: 38.653999999999996 |
|
- type: precision_at_1 |
|
value: 22.119 |
|
- type: precision_at_10 |
|
value: 6.92 |
|
- type: precision_at_100 |
|
value: 0.95 |
|
- type: precision_at_1000 |
|
value: 0.099 |
|
- type: precision_at_3 |
|
value: 14.272000000000002 |
|
- type: precision_at_5 |
|
value: 10.811 |
|
- type: recall_at_1 |
|
value: 22.119 |
|
- type: recall_at_10 |
|
value: 69.203 |
|
- type: recall_at_100 |
|
value: 95.021 |
|
- type: recall_at_1000 |
|
value: 99.075 |
|
- type: recall_at_3 |
|
value: 42.817 |
|
- type: recall_at_5 |
|
value: 54.054 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 34.1740289109719 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 23.985251383455463 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 60.24873612289029 |
|
- type: mrr |
|
value: 74.65692740623489 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.22415390332444 |
|
- type: cos_sim_spearman |
|
value: 82.9591191954711 |
|
- type: euclidean_pearson |
|
value: 44.096317524324945 |
|
- type: euclidean_spearman |
|
value: 42.95218351391625 |
|
- type: manhattan_pearson |
|
value: 44.07766490545065 |
|
- type: manhattan_spearman |
|
value: 42.78350497166606 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 74.64285714285714 |
|
- type: f1 |
|
value: 73.53680835577447 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 28.512813238490164 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 20.942214972649488 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.255999999999997 |
|
- type: map_at_10 |
|
value: 37.091 |
|
- type: map_at_100 |
|
value: 38.428000000000004 |
|
- type: map_at_1000 |
|
value: 38.559 |
|
- type: map_at_3 |
|
value: 34.073 |
|
- type: map_at_5 |
|
value: 35.739 |
|
- type: mrr_at_1 |
|
value: 34.907 |
|
- type: mrr_at_10 |
|
value: 42.769 |
|
- type: mrr_at_100 |
|
value: 43.607 |
|
- type: mrr_at_1000 |
|
value: 43.656 |
|
- type: mrr_at_3 |
|
value: 39.986 |
|
- type: mrr_at_5 |
|
value: 41.581 |
|
- type: ndcg_at_1 |
|
value: 34.907 |
|
- type: ndcg_at_10 |
|
value: 42.681000000000004 |
|
- type: ndcg_at_100 |
|
value: 48.213 |
|
- type: ndcg_at_1000 |
|
value: 50.464 |
|
- type: ndcg_at_3 |
|
value: 37.813 |
|
- type: ndcg_at_5 |
|
value: 39.936 |
|
- type: precision_at_1 |
|
value: 34.907 |
|
- type: precision_at_10 |
|
value: 7.911 |
|
- type: precision_at_100 |
|
value: 1.349 |
|
- type: precision_at_1000 |
|
value: 0.184 |
|
- type: precision_at_3 |
|
value: 17.93 |
|
- type: precision_at_5 |
|
value: 12.732 |
|
- type: recall_at_1 |
|
value: 28.255999999999997 |
|
- type: recall_at_10 |
|
value: 53.49699999999999 |
|
- type: recall_at_100 |
|
value: 77.288 |
|
- type: recall_at_1000 |
|
value: 91.776 |
|
- type: recall_at_3 |
|
value: 39.18 |
|
- type: recall_at_5 |
|
value: 45.365 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.563999999999997 |
|
- type: map_at_10 |
|
value: 33.913 |
|
- type: map_at_100 |
|
value: 34.966 |
|
- type: map_at_1000 |
|
value: 35.104 |
|
- type: map_at_3 |
|
value: 31.413000000000004 |
|
- type: map_at_5 |
|
value: 32.854 |
|
- type: mrr_at_1 |
|
value: 31.72 |
|
- type: mrr_at_10 |
|
value: 39.391 |
|
- type: mrr_at_100 |
|
value: 40.02 |
|
- type: mrr_at_1000 |
|
value: 40.076 |
|
- type: mrr_at_3 |
|
value: 37.314 |
|
- type: mrr_at_5 |
|
value: 38.507999999999996 |
|
- type: ndcg_at_1 |
|
value: 31.72 |
|
- type: ndcg_at_10 |
|
value: 38.933 |
|
- type: ndcg_at_100 |
|
value: 43.024 |
|
- type: ndcg_at_1000 |
|
value: 45.556999999999995 |
|
- type: ndcg_at_3 |
|
value: 35.225 |
|
- type: ndcg_at_5 |
|
value: 36.984 |
|
- type: precision_at_1 |
|
value: 31.72 |
|
- type: precision_at_10 |
|
value: 7.248 |
|
- type: precision_at_100 |
|
value: 1.192 |
|
- type: precision_at_1000 |
|
value: 0.16999999999999998 |
|
- type: precision_at_3 |
|
value: 16.943 |
|
- type: precision_at_5 |
|
value: 11.975 |
|
- type: recall_at_1 |
|
value: 25.563999999999997 |
|
- type: recall_at_10 |
|
value: 47.808 |
|
- type: recall_at_100 |
|
value: 65.182 |
|
- type: recall_at_1000 |
|
value: 81.831 |
|
- type: recall_at_3 |
|
value: 36.889 |
|
- type: recall_at_5 |
|
value: 41.829 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 33.662 |
|
- type: map_at_10 |
|
value: 44.096999999999994 |
|
- type: map_at_100 |
|
value: 45.153999999999996 |
|
- type: map_at_1000 |
|
value: 45.223 |
|
- type: map_at_3 |
|
value: 41.377 |
|
- type: map_at_5 |
|
value: 42.935 |
|
- type: mrr_at_1 |
|
value: 38.997 |
|
- type: mrr_at_10 |
|
value: 47.675 |
|
- type: mrr_at_100 |
|
value: 48.476 |
|
- type: mrr_at_1000 |
|
value: 48.519 |
|
- type: mrr_at_3 |
|
value: 45.549 |
|
- type: mrr_at_5 |
|
value: 46.884 |
|
- type: ndcg_at_1 |
|
value: 38.997 |
|
- type: ndcg_at_10 |
|
value: 49.196 |
|
- type: ndcg_at_100 |
|
value: 53.788000000000004 |
|
- type: ndcg_at_1000 |
|
value: 55.393 |
|
- type: ndcg_at_3 |
|
value: 44.67 |
|
- type: ndcg_at_5 |
|
value: 46.991 |
|
- type: precision_at_1 |
|
value: 38.997 |
|
- type: precision_at_10 |
|
value: 7.875 |
|
- type: precision_at_100 |
|
value: 1.102 |
|
- type: precision_at_1000 |
|
value: 0.13 |
|
- type: precision_at_3 |
|
value: 19.854 |
|
- type: precision_at_5 |
|
value: 13.605 |
|
- type: recall_at_1 |
|
value: 33.662 |
|
- type: recall_at_10 |
|
value: 60.75899999999999 |
|
- type: recall_at_100 |
|
value: 81.11699999999999 |
|
- type: recall_at_1000 |
|
value: 92.805 |
|
- type: recall_at_3 |
|
value: 48.577999999999996 |
|
- type: recall_at_5 |
|
value: 54.384 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.313 |
|
- type: map_at_10 |
|
value: 29.036 |
|
- type: map_at_100 |
|
value: 29.975 |
|
- type: map_at_1000 |
|
value: 30.063000000000002 |
|
- type: map_at_3 |
|
value: 26.878999999999998 |
|
- type: map_at_5 |
|
value: 28.005999999999997 |
|
- type: mrr_at_1 |
|
value: 23.39 |
|
- type: mrr_at_10 |
|
value: 31.072 |
|
- type: mrr_at_100 |
|
value: 31.922 |
|
- type: mrr_at_1000 |
|
value: 31.995 |
|
- type: mrr_at_3 |
|
value: 28.908 |
|
- type: mrr_at_5 |
|
value: 30.104999999999997 |
|
- type: ndcg_at_1 |
|
value: 23.39 |
|
- type: ndcg_at_10 |
|
value: 33.448 |
|
- type: ndcg_at_100 |
|
value: 38.255 |
|
- type: ndcg_at_1000 |
|
value: 40.542 |
|
- type: ndcg_at_3 |
|
value: 29.060000000000002 |
|
- type: ndcg_at_5 |
|
value: 31.023 |
|
- type: precision_at_1 |
|
value: 23.39 |
|
- type: precision_at_10 |
|
value: 5.175 |
|
- type: precision_at_100 |
|
value: 0.8049999999999999 |
|
- type: precision_at_1000 |
|
value: 0.10300000000000001 |
|
- type: precision_at_3 |
|
value: 12.504999999999999 |
|
- type: precision_at_5 |
|
value: 8.61 |
|
- type: recall_at_1 |
|
value: 21.313 |
|
- type: recall_at_10 |
|
value: 45.345 |
|
- type: recall_at_100 |
|
value: 67.752 |
|
- type: recall_at_1000 |
|
value: 84.937 |
|
- type: recall_at_3 |
|
value: 33.033 |
|
- type: recall_at_5 |
|
value: 37.929 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 14.255999999999998 |
|
- type: map_at_10 |
|
value: 20.339 |
|
- type: map_at_100 |
|
value: 21.491 |
|
- type: map_at_1000 |
|
value: 21.616 |
|
- type: map_at_3 |
|
value: 18.481 |
|
- type: map_at_5 |
|
value: 19.594 |
|
- type: mrr_at_1 |
|
value: 17.413 |
|
- type: mrr_at_10 |
|
value: 24.146 |
|
- type: mrr_at_100 |
|
value: 25.188 |
|
- type: mrr_at_1000 |
|
value: 25.273 |
|
- type: mrr_at_3 |
|
value: 22.264 |
|
- type: mrr_at_5 |
|
value: 23.302 |
|
- type: ndcg_at_1 |
|
value: 17.413 |
|
- type: ndcg_at_10 |
|
value: 24.272 |
|
- type: ndcg_at_100 |
|
value: 29.82 |
|
- type: ndcg_at_1000 |
|
value: 33.072 |
|
- type: ndcg_at_3 |
|
value: 20.826 |
|
- type: ndcg_at_5 |
|
value: 22.535 |
|
- type: precision_at_1 |
|
value: 17.413 |
|
- type: precision_at_10 |
|
value: 4.366 |
|
- type: precision_at_100 |
|
value: 0.818 |
|
- type: precision_at_1000 |
|
value: 0.124 |
|
- type: precision_at_3 |
|
value: 9.866999999999999 |
|
- type: precision_at_5 |
|
value: 7.164 |
|
- type: recall_at_1 |
|
value: 14.255999999999998 |
|
- type: recall_at_10 |
|
value: 32.497 |
|
- type: recall_at_100 |
|
value: 56.592 |
|
- type: recall_at_1000 |
|
value: 80.17699999999999 |
|
- type: recall_at_3 |
|
value: 23.195 |
|
- type: recall_at_5 |
|
value: 27.392 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 22.709 |
|
- type: map_at_10 |
|
value: 31.377 |
|
- type: map_at_100 |
|
value: 32.536 |
|
- type: map_at_1000 |
|
value: 32.669 |
|
- type: map_at_3 |
|
value: 28.572999999999997 |
|
- type: map_at_5 |
|
value: 30.205 |
|
- type: mrr_at_1 |
|
value: 27.815 |
|
- type: mrr_at_10 |
|
value: 36.452 |
|
- type: mrr_at_100 |
|
value: 37.302 |
|
- type: mrr_at_1000 |
|
value: 37.364000000000004 |
|
- type: mrr_at_3 |
|
value: 33.75 |
|
- type: mrr_at_5 |
|
value: 35.43 |
|
- type: ndcg_at_1 |
|
value: 27.815 |
|
- type: ndcg_at_10 |
|
value: 36.84 |
|
- type: ndcg_at_100 |
|
value: 42.092 |
|
- type: ndcg_at_1000 |
|
value: 44.727 |
|
- type: ndcg_at_3 |
|
value: 31.964 |
|
- type: ndcg_at_5 |
|
value: 34.428 |
|
- type: precision_at_1 |
|
value: 27.815 |
|
- type: precision_at_10 |
|
value: 6.67 |
|
- type: precision_at_100 |
|
value: 1.093 |
|
- type: precision_at_1000 |
|
value: 0.151 |
|
- type: precision_at_3 |
|
value: 14.982000000000001 |
|
- type: precision_at_5 |
|
value: 10.857 |
|
- type: recall_at_1 |
|
value: 22.709 |
|
- type: recall_at_10 |
|
value: 48.308 |
|
- type: recall_at_100 |
|
value: 70.866 |
|
- type: recall_at_1000 |
|
value: 88.236 |
|
- type: recall_at_3 |
|
value: 34.709 |
|
- type: recall_at_5 |
|
value: 40.996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 22.348000000000003 |
|
- type: map_at_10 |
|
value: 29.427999999999997 |
|
- type: map_at_100 |
|
value: 30.499 |
|
- type: map_at_1000 |
|
value: 30.631999999999998 |
|
- type: map_at_3 |
|
value: 27.035999999999998 |
|
- type: map_at_5 |
|
value: 28.351 |
|
- type: mrr_at_1 |
|
value: 27.74 |
|
- type: mrr_at_10 |
|
value: 34.424 |
|
- type: mrr_at_100 |
|
value: 35.341 |
|
- type: mrr_at_1000 |
|
value: 35.419 |
|
- type: mrr_at_3 |
|
value: 32.401 |
|
- type: mrr_at_5 |
|
value: 33.497 |
|
- type: ndcg_at_1 |
|
value: 27.74 |
|
- type: ndcg_at_10 |
|
value: 34.136 |
|
- type: ndcg_at_100 |
|
value: 39.269 |
|
- type: ndcg_at_1000 |
|
value: 42.263 |
|
- type: ndcg_at_3 |
|
value: 30.171999999999997 |
|
- type: ndcg_at_5 |
|
value: 31.956 |
|
- type: precision_at_1 |
|
value: 27.74 |
|
- type: precision_at_10 |
|
value: 6.062 |
|
- type: precision_at_100 |
|
value: 1.014 |
|
- type: precision_at_1000 |
|
value: 0.146 |
|
- type: precision_at_3 |
|
value: 14.079 |
|
- type: precision_at_5 |
|
value: 9.977 |
|
- type: recall_at_1 |
|
value: 22.348000000000003 |
|
- type: recall_at_10 |
|
value: 43.477 |
|
- type: recall_at_100 |
|
value: 65.945 |
|
- type: recall_at_1000 |
|
value: 86.587 |
|
- type: recall_at_3 |
|
value: 32.107 |
|
- type: recall_at_5 |
|
value: 36.974000000000004 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.688499999999998 |
|
- type: map_at_10 |
|
value: 29.164666666666665 |
|
- type: map_at_100 |
|
value: 30.22575 |
|
- type: map_at_1000 |
|
value: 30.350833333333334 |
|
- type: map_at_3 |
|
value: 26.82025 |
|
- type: map_at_5 |
|
value: 28.14966666666667 |
|
- type: mrr_at_1 |
|
value: 25.779249999999998 |
|
- type: mrr_at_10 |
|
value: 32.969 |
|
- type: mrr_at_100 |
|
value: 33.81725 |
|
- type: mrr_at_1000 |
|
value: 33.88825 |
|
- type: mrr_at_3 |
|
value: 30.831250000000004 |
|
- type: mrr_at_5 |
|
value: 32.065000000000005 |
|
- type: ndcg_at_1 |
|
value: 25.779249999999998 |
|
- type: ndcg_at_10 |
|
value: 33.73675 |
|
- type: ndcg_at_100 |
|
value: 38.635666666666665 |
|
- type: ndcg_at_1000 |
|
value: 41.353500000000004 |
|
- type: ndcg_at_3 |
|
value: 29.66283333333333 |
|
- type: ndcg_at_5 |
|
value: 31.607249999999997 |
|
- type: precision_at_1 |
|
value: 25.779249999999998 |
|
- type: precision_at_10 |
|
value: 5.861416666666667 |
|
- type: precision_at_100 |
|
value: 0.9852500000000002 |
|
- type: precision_at_1000 |
|
value: 0.14108333333333334 |
|
- type: precision_at_3 |
|
value: 13.563583333333332 |
|
- type: precision_at_5 |
|
value: 9.630333333333335 |
|
- type: recall_at_1 |
|
value: 21.688499999999998 |
|
- type: recall_at_10 |
|
value: 43.605 |
|
- type: recall_at_100 |
|
value: 65.52366666666667 |
|
- type: recall_at_1000 |
|
value: 84.69683333333332 |
|
- type: recall_at_3 |
|
value: 32.195499999999996 |
|
- type: recall_at_5 |
|
value: 37.25325 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 17.279 |
|
- type: map_at_10 |
|
value: 23.238 |
|
- type: map_at_100 |
|
value: 24.026 |
|
- type: map_at_1000 |
|
value: 24.13 |
|
- type: map_at_3 |
|
value: 20.730999999999998 |
|
- type: map_at_5 |
|
value: 22.278000000000002 |
|
- type: mrr_at_1 |
|
value: 19.017999999999997 |
|
- type: mrr_at_10 |
|
value: 25.188 |
|
- type: mrr_at_100 |
|
value: 25.918999999999997 |
|
- type: mrr_at_1000 |
|
value: 25.996999999999996 |
|
- type: mrr_at_3 |
|
value: 22.776 |
|
- type: mrr_at_5 |
|
value: 24.256 |
|
- type: ndcg_at_1 |
|
value: 19.017999999999997 |
|
- type: ndcg_at_10 |
|
value: 27.171 |
|
- type: ndcg_at_100 |
|
value: 31.274 |
|
- type: ndcg_at_1000 |
|
value: 34.016000000000005 |
|
- type: ndcg_at_3 |
|
value: 22.442 |
|
- type: ndcg_at_5 |
|
value: 24.955 |
|
- type: precision_at_1 |
|
value: 19.017999999999997 |
|
- type: precision_at_10 |
|
value: 4.494 |
|
- type: precision_at_100 |
|
value: 0.712 |
|
- type: precision_at_1000 |
|
value: 0.10300000000000001 |
|
- type: precision_at_3 |
|
value: 9.611 |
|
- type: precision_at_5 |
|
value: 7.331 |
|
- type: recall_at_1 |
|
value: 17.279 |
|
- type: recall_at_10 |
|
value: 37.464999999999996 |
|
- type: recall_at_100 |
|
value: 56.458 |
|
- type: recall_at_1000 |
|
value: 76.759 |
|
- type: recall_at_3 |
|
value: 24.659 |
|
- type: recall_at_5 |
|
value: 30.672 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 14.901 |
|
- type: map_at_10 |
|
value: 20.268 |
|
- type: map_at_100 |
|
value: 21.143 |
|
- type: map_at_1000 |
|
value: 21.264 |
|
- type: map_at_3 |
|
value: 18.557000000000002 |
|
- type: map_at_5 |
|
value: 19.483 |
|
- type: mrr_at_1 |
|
value: 17.997 |
|
- type: mrr_at_10 |
|
value: 23.591 |
|
- type: mrr_at_100 |
|
value: 24.387 |
|
- type: mrr_at_1000 |
|
value: 24.471 |
|
- type: mrr_at_3 |
|
value: 21.874 |
|
- type: mrr_at_5 |
|
value: 22.797 |
|
- type: ndcg_at_1 |
|
value: 17.997 |
|
- type: ndcg_at_10 |
|
value: 23.87 |
|
- type: ndcg_at_100 |
|
value: 28.459 |
|
- type: ndcg_at_1000 |
|
value: 31.66 |
|
- type: ndcg_at_3 |
|
value: 20.779 |
|
- type: ndcg_at_5 |
|
value: 22.137 |
|
- type: precision_at_1 |
|
value: 17.997 |
|
- type: precision_at_10 |
|
value: 4.25 |
|
- type: precision_at_100 |
|
value: 0.761 |
|
- type: precision_at_1000 |
|
value: 0.121 |
|
- type: precision_at_3 |
|
value: 9.716 |
|
- type: precision_at_5 |
|
value: 6.909999999999999 |
|
- type: recall_at_1 |
|
value: 14.901 |
|
- type: recall_at_10 |
|
value: 31.44 |
|
- type: recall_at_100 |
|
value: 52.717000000000006 |
|
- type: recall_at_1000 |
|
value: 76.102 |
|
- type: recall_at_3 |
|
value: 22.675 |
|
- type: recall_at_5 |
|
value: 26.336 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.52 |
|
- type: map_at_10 |
|
value: 28.397 |
|
- type: map_at_100 |
|
value: 29.443 |
|
- type: map_at_1000 |
|
value: 29.56 |
|
- type: map_at_3 |
|
value: 26.501 |
|
- type: map_at_5 |
|
value: 27.375 |
|
- type: mrr_at_1 |
|
value: 25.28 |
|
- type: mrr_at_10 |
|
value: 32.102000000000004 |
|
- type: mrr_at_100 |
|
value: 33.005 |
|
- type: mrr_at_1000 |
|
value: 33.084 |
|
- type: mrr_at_3 |
|
value: 30.208000000000002 |
|
- type: mrr_at_5 |
|
value: 31.146 |
|
- type: ndcg_at_1 |
|
value: 25.28 |
|
- type: ndcg_at_10 |
|
value: 32.635 |
|
- type: ndcg_at_100 |
|
value: 37.672 |
|
- type: ndcg_at_1000 |
|
value: 40.602 |
|
- type: ndcg_at_3 |
|
value: 28.951999999999998 |
|
- type: ndcg_at_5 |
|
value: 30.336999999999996 |
|
- type: precision_at_1 |
|
value: 25.28 |
|
- type: precision_at_10 |
|
value: 5.3260000000000005 |
|
- type: precision_at_100 |
|
value: 0.8840000000000001 |
|
- type: precision_at_1000 |
|
value: 0.126 |
|
- type: precision_at_3 |
|
value: 12.687000000000001 |
|
- type: precision_at_5 |
|
value: 8.638 |
|
- type: recall_at_1 |
|
value: 21.52 |
|
- type: recall_at_10 |
|
value: 41.955 |
|
- type: recall_at_100 |
|
value: 64.21 |
|
- type: recall_at_1000 |
|
value: 85.28099999999999 |
|
- type: recall_at_3 |
|
value: 31.979999999999997 |
|
- type: recall_at_5 |
|
value: 35.406 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 20.296 |
|
- type: map_at_10 |
|
value: 28.449999999999996 |
|
- type: map_at_100 |
|
value: 29.847 |
|
- type: map_at_1000 |
|
value: 30.073 |
|
- type: map_at_3 |
|
value: 25.995 |
|
- type: map_at_5 |
|
value: 27.603 |
|
- type: mrr_at_1 |
|
value: 25.296000000000003 |
|
- type: mrr_at_10 |
|
value: 32.751999999999995 |
|
- type: mrr_at_100 |
|
value: 33.705 |
|
- type: mrr_at_1000 |
|
value: 33.783 |
|
- type: mrr_at_3 |
|
value: 30.731 |
|
- type: mrr_at_5 |
|
value: 32.006 |
|
- type: ndcg_at_1 |
|
value: 25.296000000000003 |
|
- type: ndcg_at_10 |
|
value: 33.555 |
|
- type: ndcg_at_100 |
|
value: 38.891999999999996 |
|
- type: ndcg_at_1000 |
|
value: 42.088 |
|
- type: ndcg_at_3 |
|
value: 29.944 |
|
- type: ndcg_at_5 |
|
value: 31.997999999999998 |
|
- type: precision_at_1 |
|
value: 25.296000000000003 |
|
- type: precision_at_10 |
|
value: 6.542000000000001 |
|
- type: precision_at_100 |
|
value: 1.354 |
|
- type: precision_at_1000 |
|
value: 0.22599999999999998 |
|
- type: precision_at_3 |
|
value: 14.360999999999999 |
|
- type: precision_at_5 |
|
value: 10.593 |
|
- type: recall_at_1 |
|
value: 20.296 |
|
- type: recall_at_10 |
|
value: 42.742000000000004 |
|
- type: recall_at_100 |
|
value: 67.351 |
|
- type: recall_at_1000 |
|
value: 88.774 |
|
- type: recall_at_3 |
|
value: 32.117000000000004 |
|
- type: recall_at_5 |
|
value: 37.788 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.157999999999998 |
|
- type: map_at_10 |
|
value: 24.342 |
|
- type: map_at_100 |
|
value: 25.201 |
|
- type: map_at_1000 |
|
value: 25.317 |
|
- type: map_at_3 |
|
value: 22.227 |
|
- type: map_at_5 |
|
value: 23.372999999999998 |
|
- type: mrr_at_1 |
|
value: 19.778000000000002 |
|
- type: mrr_at_10 |
|
value: 26.066 |
|
- type: mrr_at_100 |
|
value: 26.935 |
|
- type: mrr_at_1000 |
|
value: 27.022000000000002 |
|
- type: mrr_at_3 |
|
value: 24.214 |
|
- type: mrr_at_5 |
|
value: 25.268 |
|
- type: ndcg_at_1 |
|
value: 19.778000000000002 |
|
- type: ndcg_at_10 |
|
value: 28.104000000000003 |
|
- type: ndcg_at_100 |
|
value: 32.87 |
|
- type: ndcg_at_1000 |
|
value: 35.858000000000004 |
|
- type: ndcg_at_3 |
|
value: 24.107 |
|
- type: ndcg_at_5 |
|
value: 26.007 |
|
- type: precision_at_1 |
|
value: 19.778000000000002 |
|
- type: precision_at_10 |
|
value: 4.417999999999999 |
|
- type: precision_at_100 |
|
value: 0.739 |
|
- type: precision_at_1000 |
|
value: 0.109 |
|
- type: precision_at_3 |
|
value: 10.228 |
|
- type: precision_at_5 |
|
value: 7.172000000000001 |
|
- type: recall_at_1 |
|
value: 18.157999999999998 |
|
- type: recall_at_10 |
|
value: 37.967 |
|
- type: recall_at_100 |
|
value: 60.806000000000004 |
|
- type: recall_at_1000 |
|
value: 83.097 |
|
- type: recall_at_3 |
|
value: 27.223999999999997 |
|
- type: recall_at_5 |
|
value: 31.968000000000004 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 7.055 |
|
- type: map_at_10 |
|
value: 11.609 |
|
- type: map_at_100 |
|
value: 12.83 |
|
- type: map_at_1000 |
|
value: 12.995000000000001 |
|
- type: map_at_3 |
|
value: 9.673 |
|
- type: map_at_5 |
|
value: 10.761999999999999 |
|
- type: mrr_at_1 |
|
value: 15.309000000000001 |
|
- type: mrr_at_10 |
|
value: 23.655 |
|
- type: mrr_at_100 |
|
value: 24.785 |
|
- type: mrr_at_1000 |
|
value: 24.856 |
|
- type: mrr_at_3 |
|
value: 20.499000000000002 |
|
- type: mrr_at_5 |
|
value: 22.425 |
|
- type: ndcg_at_1 |
|
value: 15.309000000000001 |
|
- type: ndcg_at_10 |
|
value: 17.252000000000002 |
|
- type: ndcg_at_100 |
|
value: 22.976 |
|
- type: ndcg_at_1000 |
|
value: 26.480999999999998 |
|
- type: ndcg_at_3 |
|
value: 13.418 |
|
- type: ndcg_at_5 |
|
value: 15.084 |
|
- type: precision_at_1 |
|
value: 15.309000000000001 |
|
- type: precision_at_10 |
|
value: 5.309 |
|
- type: precision_at_100 |
|
value: 1.1320000000000001 |
|
- type: precision_at_1000 |
|
value: 0.17600000000000002 |
|
- type: precision_at_3 |
|
value: 9.62 |
|
- type: precision_at_5 |
|
value: 7.883 |
|
- type: recall_at_1 |
|
value: 7.055 |
|
- type: recall_at_10 |
|
value: 21.891 |
|
- type: recall_at_100 |
|
value: 41.979 |
|
- type: recall_at_1000 |
|
value: 62.239999999999995 |
|
- type: recall_at_3 |
|
value: 12.722 |
|
- type: recall_at_5 |
|
value: 16.81 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: dbpedia-entity |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 6.909 |
|
- type: map_at_10 |
|
value: 12.844 |
|
- type: map_at_100 |
|
value: 16.435 |
|
- type: map_at_1000 |
|
value: 17.262 |
|
- type: map_at_3 |
|
value: 10.131 |
|
- type: map_at_5 |
|
value: 11.269 |
|
- type: mrr_at_1 |
|
value: 54.50000000000001 |
|
- type: mrr_at_10 |
|
value: 62.202 |
|
- type: mrr_at_100 |
|
value: 62.81 |
|
- type: mrr_at_1000 |
|
value: 62.824000000000005 |
|
- type: mrr_at_3 |
|
value: 60.5 |
|
- type: mrr_at_5 |
|
value: 61.324999999999996 |
|
- type: ndcg_at_1 |
|
value: 42.125 |
|
- type: ndcg_at_10 |
|
value: 28.284 |
|
- type: ndcg_at_100 |
|
value: 30.444 |
|
- type: ndcg_at_1000 |
|
value: 36.397 |
|
- type: ndcg_at_3 |
|
value: 33.439 |
|
- type: ndcg_at_5 |
|
value: 30.473 |
|
- type: precision_at_1 |
|
value: 54.50000000000001 |
|
- type: precision_at_10 |
|
value: 21.4 |
|
- type: precision_at_100 |
|
value: 6.192 |
|
- type: precision_at_1000 |
|
value: 1.398 |
|
- type: precision_at_3 |
|
value: 36.583 |
|
- type: precision_at_5 |
|
value: 28.799999999999997 |
|
- type: recall_at_1 |
|
value: 6.909 |
|
- type: recall_at_10 |
|
value: 17.296 |
|
- type: recall_at_100 |
|
value: 33.925 |
|
- type: recall_at_1000 |
|
value: 53.786 |
|
- type: recall_at_3 |
|
value: 11.333 |
|
- type: recall_at_5 |
|
value: 13.529 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 36.08 |
|
- type: f1 |
|
value: 33.016420191943766 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 52.605000000000004 |
|
- type: map_at_10 |
|
value: 63.31400000000001 |
|
- type: map_at_100 |
|
value: 63.678000000000004 |
|
- type: map_at_1000 |
|
value: 63.699 |
|
- type: map_at_3 |
|
value: 61.141 |
|
- type: map_at_5 |
|
value: 62.517999999999994 |
|
- type: mrr_at_1 |
|
value: 56.871 |
|
- type: mrr_at_10 |
|
value: 67.915 |
|
- type: mrr_at_100 |
|
value: 68.24900000000001 |
|
- type: mrr_at_1000 |
|
value: 68.262 |
|
- type: mrr_at_3 |
|
value: 65.809 |
|
- type: mrr_at_5 |
|
value: 67.171 |
|
- type: ndcg_at_1 |
|
value: 56.871 |
|
- type: ndcg_at_10 |
|
value: 69.122 |
|
- type: ndcg_at_100 |
|
value: 70.855 |
|
- type: ndcg_at_1000 |
|
value: 71.368 |
|
- type: ndcg_at_3 |
|
value: 64.974 |
|
- type: ndcg_at_5 |
|
value: 67.318 |
|
- type: precision_at_1 |
|
value: 56.871 |
|
- type: precision_at_10 |
|
value: 9.029 |
|
- type: precision_at_100 |
|
value: 0.996 |
|
- type: precision_at_1000 |
|
value: 0.105 |
|
- type: precision_at_3 |
|
value: 25.893 |
|
- type: precision_at_5 |
|
value: 16.838 |
|
- type: recall_at_1 |
|
value: 52.605000000000004 |
|
- type: recall_at_10 |
|
value: 82.679 |
|
- type: recall_at_100 |
|
value: 90.586 |
|
- type: recall_at_1000 |
|
value: 94.38 |
|
- type: recall_at_3 |
|
value: 71.447 |
|
- type: recall_at_5 |
|
value: 77.218 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 10.759 |
|
- type: map_at_10 |
|
value: 18.877 |
|
- type: map_at_100 |
|
value: 20.498 |
|
- type: map_at_1000 |
|
value: 20.682000000000002 |
|
- type: map_at_3 |
|
value: 16.159000000000002 |
|
- type: map_at_5 |
|
value: 17.575 |
|
- type: mrr_at_1 |
|
value: 22.531000000000002 |
|
- type: mrr_at_10 |
|
value: 31.155 |
|
- type: mrr_at_100 |
|
value: 32.188 |
|
- type: mrr_at_1000 |
|
value: 32.245000000000005 |
|
- type: mrr_at_3 |
|
value: 28.781000000000002 |
|
- type: mrr_at_5 |
|
value: 30.054 |
|
- type: ndcg_at_1 |
|
value: 22.531000000000002 |
|
- type: ndcg_at_10 |
|
value: 25.189 |
|
- type: ndcg_at_100 |
|
value: 31.958 |
|
- type: ndcg_at_1000 |
|
value: 35.693999999999996 |
|
- type: ndcg_at_3 |
|
value: 22.235 |
|
- type: ndcg_at_5 |
|
value: 23.044999999999998 |
|
- type: precision_at_1 |
|
value: 22.531000000000002 |
|
- type: precision_at_10 |
|
value: 7.438000000000001 |
|
- type: precision_at_100 |
|
value: 1.418 |
|
- type: precision_at_1000 |
|
value: 0.208 |
|
- type: precision_at_3 |
|
value: 15.329 |
|
- type: precision_at_5 |
|
value: 11.451 |
|
- type: recall_at_1 |
|
value: 10.759 |
|
- type: recall_at_10 |
|
value: 31.416 |
|
- type: recall_at_100 |
|
value: 56.989000000000004 |
|
- type: recall_at_1000 |
|
value: 80.33200000000001 |
|
- type: recall_at_3 |
|
value: 20.61 |
|
- type: recall_at_5 |
|
value: 24.903 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 29.21 |
|
- type: map_at_10 |
|
value: 38.765 |
|
- type: map_at_100 |
|
value: 39.498 |
|
- type: map_at_1000 |
|
value: 39.568 |
|
- type: map_at_3 |
|
value: 36.699 |
|
- type: map_at_5 |
|
value: 37.925 |
|
- type: mrr_at_1 |
|
value: 58.42 |
|
- type: mrr_at_10 |
|
value: 65.137 |
|
- type: mrr_at_100 |
|
value: 65.542 |
|
- type: mrr_at_1000 |
|
value: 65.568 |
|
- type: mrr_at_3 |
|
value: 63.698 |
|
- type: mrr_at_5 |
|
value: 64.575 |
|
- type: ndcg_at_1 |
|
value: 58.42 |
|
- type: ndcg_at_10 |
|
value: 47.476 |
|
- type: ndcg_at_100 |
|
value: 50.466 |
|
- type: ndcg_at_1000 |
|
value: 52.064 |
|
- type: ndcg_at_3 |
|
value: 43.986 |
|
- type: ndcg_at_5 |
|
value: 45.824 |
|
- type: precision_at_1 |
|
value: 58.42 |
|
- type: precision_at_10 |
|
value: 9.649000000000001 |
|
- type: precision_at_100 |
|
value: 1.201 |
|
- type: precision_at_1000 |
|
value: 0.14100000000000001 |
|
- type: precision_at_3 |
|
value: 26.977 |
|
- type: precision_at_5 |
|
value: 17.642 |
|
- type: recall_at_1 |
|
value: 29.21 |
|
- type: recall_at_10 |
|
value: 48.244 |
|
- type: recall_at_100 |
|
value: 60.041 |
|
- type: recall_at_1000 |
|
value: 70.743 |
|
- type: recall_at_3 |
|
value: 40.466 |
|
- type: recall_at_5 |
|
value: 44.105 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 58.7064 |
|
- type: ap |
|
value: 55.36326227125519 |
|
- type: f1 |
|
value: 57.46763115215848 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 15.889000000000001 |
|
- type: map_at_10 |
|
value: 25.979000000000003 |
|
- type: map_at_100 |
|
value: 27.21 |
|
- type: map_at_1000 |
|
value: 27.284000000000002 |
|
- type: map_at_3 |
|
value: 22.665 |
|
- type: map_at_5 |
|
value: 24.578 |
|
- type: mrr_at_1 |
|
value: 16.39 |
|
- type: mrr_at_10 |
|
value: 26.504 |
|
- type: mrr_at_100 |
|
value: 27.689999999999998 |
|
- type: mrr_at_1000 |
|
value: 27.758 |
|
- type: mrr_at_3 |
|
value: 23.24 |
|
- type: mrr_at_5 |
|
value: 25.108000000000004 |
|
- type: ndcg_at_1 |
|
value: 16.39 |
|
- type: ndcg_at_10 |
|
value: 31.799 |
|
- type: ndcg_at_100 |
|
value: 38.034 |
|
- type: ndcg_at_1000 |
|
value: 39.979 |
|
- type: ndcg_at_3 |
|
value: 25.054 |
|
- type: ndcg_at_5 |
|
value: 28.463 |
|
- type: precision_at_1 |
|
value: 16.39 |
|
- type: precision_at_10 |
|
value: 5.189 |
|
- type: precision_at_100 |
|
value: 0.835 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 10.84 |
|
- type: precision_at_5 |
|
value: 8.238 |
|
- type: recall_at_1 |
|
value: 15.889000000000001 |
|
- type: recall_at_10 |
|
value: 49.739 |
|
- type: recall_at_100 |
|
value: 79.251 |
|
- type: recall_at_1000 |
|
value: 94.298 |
|
- type: recall_at_3 |
|
value: 31.427 |
|
- type: recall_at_5 |
|
value: 39.623000000000005 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 88.81668946648426 |
|
- type: f1 |
|
value: 88.55200075528438 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 58.611491108071135 |
|
- type: f1 |
|
value: 42.12391403999353 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 64.67047747141896 |
|
- type: f1 |
|
value: 62.88410885922258 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 71.78547410894419 |
|
- type: f1 |
|
value: 71.69467869218154 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 27.23799937752035 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 23.26502601343789 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 30.680711484149832 |
|
- type: mrr |
|
value: 31.705059795117307 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 4.077 |
|
- type: map_at_10 |
|
value: 8.657 |
|
- type: map_at_100 |
|
value: 10.753 |
|
- type: map_at_1000 |
|
value: 11.885 |
|
- type: map_at_3 |
|
value: 6.5089999999999995 |
|
- type: map_at_5 |
|
value: 7.405 |
|
- type: mrr_at_1 |
|
value: 38.7 |
|
- type: mrr_at_10 |
|
value: 46.065 |
|
- type: mrr_at_100 |
|
value: 46.772000000000006 |
|
- type: mrr_at_1000 |
|
value: 46.83 |
|
- type: mrr_at_3 |
|
value: 44.118 |
|
- type: mrr_at_5 |
|
value: 45.015 |
|
- type: ndcg_at_1 |
|
value: 36.997 |
|
- type: ndcg_at_10 |
|
value: 25.96 |
|
- type: ndcg_at_100 |
|
value: 23.607 |
|
- type: ndcg_at_1000 |
|
value: 32.317 |
|
- type: ndcg_at_3 |
|
value: 31.06 |
|
- type: ndcg_at_5 |
|
value: 28.921000000000003 |
|
- type: precision_at_1 |
|
value: 38.7 |
|
- type: precision_at_10 |
|
value: 19.195 |
|
- type: precision_at_100 |
|
value: 6.164 |
|
- type: precision_at_1000 |
|
value: 1.839 |
|
- type: precision_at_3 |
|
value: 28.999000000000002 |
|
- type: precision_at_5 |
|
value: 25.014999999999997 |
|
- type: recall_at_1 |
|
value: 4.077 |
|
- type: recall_at_10 |
|
value: 11.802 |
|
- type: recall_at_100 |
|
value: 24.365000000000002 |
|
- type: recall_at_1000 |
|
value: 55.277 |
|
- type: recall_at_3 |
|
value: 7.435 |
|
- type: recall_at_5 |
|
value: 8.713999999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 19.588 |
|
- type: map_at_10 |
|
value: 32.08 |
|
- type: map_at_100 |
|
value: 33.32 |
|
- type: map_at_1000 |
|
value: 33.377 |
|
- type: map_at_3 |
|
value: 28.166000000000004 |
|
- type: map_at_5 |
|
value: 30.383 |
|
- type: mrr_at_1 |
|
value: 22.161 |
|
- type: mrr_at_10 |
|
value: 34.121 |
|
- type: mrr_at_100 |
|
value: 35.171 |
|
- type: mrr_at_1000 |
|
value: 35.214 |
|
- type: mrr_at_3 |
|
value: 30.692000000000004 |
|
- type: mrr_at_5 |
|
value: 32.706 |
|
- type: ndcg_at_1 |
|
value: 22.131999999999998 |
|
- type: ndcg_at_10 |
|
value: 38.887 |
|
- type: ndcg_at_100 |
|
value: 44.433 |
|
- type: ndcg_at_1000 |
|
value: 45.823 |
|
- type: ndcg_at_3 |
|
value: 31.35 |
|
- type: ndcg_at_5 |
|
value: 35.144 |
|
- type: precision_at_1 |
|
value: 22.131999999999998 |
|
- type: precision_at_10 |
|
value: 6.8629999999999995 |
|
- type: precision_at_100 |
|
value: 0.993 |
|
- type: precision_at_1000 |
|
value: 0.11199999999999999 |
|
- type: precision_at_3 |
|
value: 14.706 |
|
- type: precision_at_5 |
|
value: 10.972999999999999 |
|
- type: recall_at_1 |
|
value: 19.588 |
|
- type: recall_at_10 |
|
value: 57.703 |
|
- type: recall_at_100 |
|
value: 82.194 |
|
- type: recall_at_1000 |
|
value: 92.623 |
|
- type: recall_at_3 |
|
value: 38.012 |
|
- type: recall_at_5 |
|
value: 46.847 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 68.038 |
|
- type: map_at_10 |
|
value: 81.572 |
|
- type: map_at_100 |
|
value: 82.25200000000001 |
|
- type: map_at_1000 |
|
value: 82.27600000000001 |
|
- type: map_at_3 |
|
value: 78.618 |
|
- type: map_at_5 |
|
value: 80.449 |
|
- type: mrr_at_1 |
|
value: 78.31 |
|
- type: mrr_at_10 |
|
value: 84.98 |
|
- type: mrr_at_100 |
|
value: 85.122 |
|
- type: mrr_at_1000 |
|
value: 85.124 |
|
- type: mrr_at_3 |
|
value: 83.852 |
|
- type: mrr_at_5 |
|
value: 84.6 |
|
- type: ndcg_at_1 |
|
value: 78.31 |
|
- type: ndcg_at_10 |
|
value: 85.693 |
|
- type: ndcg_at_100 |
|
value: 87.191 |
|
- type: ndcg_at_1000 |
|
value: 87.386 |
|
- type: ndcg_at_3 |
|
value: 82.585 |
|
- type: ndcg_at_5 |
|
value: 84.255 |
|
- type: precision_at_1 |
|
value: 78.31 |
|
- type: precision_at_10 |
|
value: 12.986 |
|
- type: precision_at_100 |
|
value: 1.505 |
|
- type: precision_at_1000 |
|
value: 0.156 |
|
- type: precision_at_3 |
|
value: 36.007 |
|
- type: precision_at_5 |
|
value: 23.735999999999997 |
|
- type: recall_at_1 |
|
value: 68.038 |
|
- type: recall_at_10 |
|
value: 93.598 |
|
- type: recall_at_100 |
|
value: 98.869 |
|
- type: recall_at_1000 |
|
value: 99.86500000000001 |
|
- type: recall_at_3 |
|
value: 84.628 |
|
- type: recall_at_5 |
|
value: 89.316 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 37.948231664922865 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
metrics: |
|
- type: v_measure |
|
value: 49.90597913763894 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 3.753 |
|
- type: map_at_10 |
|
value: 8.915 |
|
- type: map_at_100 |
|
value: 10.374 |
|
- type: map_at_1000 |
|
value: 10.612 |
|
- type: map_at_3 |
|
value: 6.577 |
|
- type: map_at_5 |
|
value: 7.8 |
|
- type: mrr_at_1 |
|
value: 18.4 |
|
- type: mrr_at_10 |
|
value: 27.325 |
|
- type: mrr_at_100 |
|
value: 28.419 |
|
- type: mrr_at_1000 |
|
value: 28.494000000000003 |
|
- type: mrr_at_3 |
|
value: 24.349999999999998 |
|
- type: mrr_at_5 |
|
value: 26.205000000000002 |
|
- type: ndcg_at_1 |
|
value: 18.4 |
|
- type: ndcg_at_10 |
|
value: 15.293000000000001 |
|
- type: ndcg_at_100 |
|
value: 21.592 |
|
- type: ndcg_at_1000 |
|
value: 26.473000000000003 |
|
- type: ndcg_at_3 |
|
value: 14.748 |
|
- type: ndcg_at_5 |
|
value: 12.98 |
|
- type: precision_at_1 |
|
value: 18.4 |
|
- type: precision_at_10 |
|
value: 7.779999999999999 |
|
- type: precision_at_100 |
|
value: 1.693 |
|
- type: precision_at_1000 |
|
value: 0.28800000000000003 |
|
- type: precision_at_3 |
|
value: 13.700000000000001 |
|
- type: precision_at_5 |
|
value: 11.379999999999999 |
|
- type: recall_at_1 |
|
value: 3.753 |
|
- type: recall_at_10 |
|
value: 15.806999999999999 |
|
- type: recall_at_100 |
|
value: 34.37 |
|
- type: recall_at_1000 |
|
value: 58.463 |
|
- type: recall_at_3 |
|
value: 8.338 |
|
- type: recall_at_5 |
|
value: 11.538 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.58843987639705 |
|
- type: cos_sim_spearman |
|
value: 76.33071660715956 |
|
- type: euclidean_pearson |
|
value: 72.8029921002978 |
|
- type: euclidean_spearman |
|
value: 69.34534284782808 |
|
- type: manhattan_pearson |
|
value: 72.49781034973653 |
|
- type: manhattan_spearman |
|
value: 69.24754112621694 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 83.31673079903189 |
|
- type: cos_sim_spearman |
|
value: 74.27699263517789 |
|
- type: euclidean_pearson |
|
value: 69.4008910999579 |
|
- type: euclidean_spearman |
|
value: 59.0716984643048 |
|
- type: manhattan_pearson |
|
value: 68.87342686919199 |
|
- type: manhattan_spearman |
|
value: 58.904612865335025 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 77.59122302327788 |
|
- type: cos_sim_spearman |
|
value: 78.55383586979005 |
|
- type: euclidean_pearson |
|
value: 68.18338642204289 |
|
- type: euclidean_spearman |
|
value: 68.95092864180276 |
|
- type: manhattan_pearson |
|
value: 68.08807059822706 |
|
- type: manhattan_spearman |
|
value: 68.86135938270193 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 78.51766841424501 |
|
- type: cos_sim_spearman |
|
value: 73.84318001499558 |
|
- type: euclidean_pearson |
|
value: 67.2007138855177 |
|
- type: euclidean_spearman |
|
value: 63.98672842723766 |
|
- type: manhattan_pearson |
|
value: 67.17773810895949 |
|
- type: manhattan_spearman |
|
value: 64.07359154832962 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.73438541570299 |
|
- type: cos_sim_spearman |
|
value: 83.71357922283677 |
|
- type: euclidean_pearson |
|
value: 57.50131347498546 |
|
- type: euclidean_spearman |
|
value: 57.73623619252132 |
|
- type: manhattan_pearson |
|
value: 58.082992079000725 |
|
- type: manhattan_spearman |
|
value: 58.42728201167522 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 78.14794654172421 |
|
- type: cos_sim_spearman |
|
value: 80.025736165043 |
|
- type: euclidean_pearson |
|
value: 65.87773913985473 |
|
- type: euclidean_spearman |
|
value: 66.69337751784794 |
|
- type: manhattan_pearson |
|
value: 66.01039761004415 |
|
- type: manhattan_spearman |
|
value: 66.89215027952318 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.10554507136152 |
|
- type: cos_sim_spearman |
|
value: 87.4898082140765 |
|
- type: euclidean_pearson |
|
value: 72.19391114541367 |
|
- type: euclidean_spearman |
|
value: 70.36647944993783 |
|
- type: manhattan_pearson |
|
value: 72.18680758133698 |
|
- type: manhattan_spearman |
|
value: 70.3871215447305 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 64.54868111501618 |
|
- type: cos_sim_spearman |
|
value: 64.25173617448473 |
|
- type: euclidean_pearson |
|
value: 39.116088900637116 |
|
- type: euclidean_spearman |
|
value: 53.300772929884 |
|
- type: manhattan_pearson |
|
value: 38.3844195287959 |
|
- type: manhattan_spearman |
|
value: 52.846675312001246 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.04396610550214 |
|
- type: cos_sim_spearman |
|
value: 79.19504854997832 |
|
- type: euclidean_pearson |
|
value: 66.3284657637072 |
|
- type: euclidean_spearman |
|
value: 63.69531796729492 |
|
- type: manhattan_pearson |
|
value: 66.82324081038026 |
|
- type: manhattan_spearman |
|
value: 64.18254512904923 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 74.16264051781705 |
|
- type: mrr |
|
value: 91.80864796060874 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 38.983000000000004 |
|
- type: map_at_10 |
|
value: 47.858000000000004 |
|
- type: map_at_100 |
|
value: 48.695 |
|
- type: map_at_1000 |
|
value: 48.752 |
|
- type: map_at_3 |
|
value: 45.444 |
|
- type: map_at_5 |
|
value: 46.906 |
|
- type: mrr_at_1 |
|
value: 41.333 |
|
- type: mrr_at_10 |
|
value: 49.935 |
|
- type: mrr_at_100 |
|
value: 50.51 |
|
- type: mrr_at_1000 |
|
value: 50.55500000000001 |
|
- type: mrr_at_3 |
|
value: 47.833 |
|
- type: mrr_at_5 |
|
value: 49.117 |
|
- type: ndcg_at_1 |
|
value: 41.333 |
|
- type: ndcg_at_10 |
|
value: 52.398999999999994 |
|
- type: ndcg_at_100 |
|
value: 56.196 |
|
- type: ndcg_at_1000 |
|
value: 57.838 |
|
- type: ndcg_at_3 |
|
value: 47.987 |
|
- type: ndcg_at_5 |
|
value: 50.356 |
|
- type: precision_at_1 |
|
value: 41.333 |
|
- type: precision_at_10 |
|
value: 7.167 |
|
- type: precision_at_100 |
|
value: 0.9299999999999999 |
|
- type: precision_at_1000 |
|
value: 0.108 |
|
- type: precision_at_3 |
|
value: 19.0 |
|
- type: precision_at_5 |
|
value: 12.8 |
|
- type: recall_at_1 |
|
value: 38.983000000000004 |
|
- type: recall_at_10 |
|
value: 64.183 |
|
- type: recall_at_100 |
|
value: 82.02199999999999 |
|
- type: recall_at_1000 |
|
value: 95.167 |
|
- type: recall_at_3 |
|
value: 52.383 |
|
- type: recall_at_5 |
|
value: 58.411 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.8019801980198 |
|
- type: cos_sim_ap |
|
value: 94.9287554635848 |
|
- type: cos_sim_f1 |
|
value: 89.83739837398375 |
|
- type: cos_sim_precision |
|
value: 91.32231404958677 |
|
- type: cos_sim_recall |
|
value: 88.4 |
|
- type: dot_accuracy |
|
value: 99.23762376237623 |
|
- type: dot_ap |
|
value: 55.22534191245801 |
|
- type: dot_f1 |
|
value: 54.054054054054056 |
|
- type: dot_precision |
|
value: 55.15088449531738 |
|
- type: dot_recall |
|
value: 53.0 |
|
- type: euclidean_accuracy |
|
value: 99.6108910891089 |
|
- type: euclidean_ap |
|
value: 82.5195111329438 |
|
- type: euclidean_f1 |
|
value: 78.2847718526663 |
|
- type: euclidean_precision |
|
value: 86.93528693528694 |
|
- type: euclidean_recall |
|
value: 71.2 |
|
- type: manhattan_accuracy |
|
value: 99.5970297029703 |
|
- type: manhattan_ap |
|
value: 81.96876777875492 |
|
- type: manhattan_f1 |
|
value: 77.33773377337734 |
|
- type: manhattan_precision |
|
value: 85.94132029339853 |
|
- type: manhattan_recall |
|
value: 70.3 |
|
- type: max_accuracy |
|
value: 99.8019801980198 |
|
- type: max_ap |
|
value: 94.9287554635848 |
|
- type: max_f1 |
|
value: 89.83739837398375 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 46.34997003954114 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 31.462336020554893 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 47.1757817459526 |
|
- type: mrr |
|
value: 47.941057104660054 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 30.56106249068471 |
|
- type: cos_sim_spearman |
|
value: 31.24613190558528 |
|
- type: dot_pearson |
|
value: 20.486610035794257 |
|
- type: dot_spearman |
|
value: 23.115667545894546 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.182 |
|
- type: map_at_10 |
|
value: 1.155 |
|
- type: map_at_100 |
|
value: 5.118 |
|
- type: map_at_1000 |
|
value: 11.827 |
|
- type: map_at_3 |
|
value: 0.482 |
|
- type: map_at_5 |
|
value: 0.712 |
|
- type: mrr_at_1 |
|
value: 70.0 |
|
- type: mrr_at_10 |
|
value: 79.483 |
|
- type: mrr_at_100 |
|
value: 79.637 |
|
- type: mrr_at_1000 |
|
value: 79.637 |
|
- type: mrr_at_3 |
|
value: 77.667 |
|
- type: mrr_at_5 |
|
value: 78.567 |
|
- type: ndcg_at_1 |
|
value: 63.0 |
|
- type: ndcg_at_10 |
|
value: 52.303 |
|
- type: ndcg_at_100 |
|
value: 37.361 |
|
- type: ndcg_at_1000 |
|
value: 32.84 |
|
- type: ndcg_at_3 |
|
value: 58.274 |
|
- type: ndcg_at_5 |
|
value: 55.601 |
|
- type: precision_at_1 |
|
value: 70.0 |
|
- type: precision_at_10 |
|
value: 55.60000000000001 |
|
- type: precision_at_100 |
|
value: 37.96 |
|
- type: precision_at_1000 |
|
value: 14.738000000000001 |
|
- type: precision_at_3 |
|
value: 62.666999999999994 |
|
- type: precision_at_5 |
|
value: 60.0 |
|
- type: recall_at_1 |
|
value: 0.182 |
|
- type: recall_at_10 |
|
value: 1.4120000000000001 |
|
- type: recall_at_100 |
|
value: 8.533 |
|
- type: recall_at_1000 |
|
value: 30.572 |
|
- type: recall_at_3 |
|
value: 0.5309999999999999 |
|
- type: recall_at_5 |
|
value: 0.814 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: webis-touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.385 |
|
- type: map_at_10 |
|
value: 7.185999999999999 |
|
- type: map_at_100 |
|
value: 11.642 |
|
- type: map_at_1000 |
|
value: 12.953000000000001 |
|
- type: map_at_3 |
|
value: 3.496 |
|
- type: map_at_5 |
|
value: 4.82 |
|
- type: mrr_at_1 |
|
value: 16.326999999999998 |
|
- type: mrr_at_10 |
|
value: 29.461 |
|
- type: mrr_at_100 |
|
value: 31.436999999999998 |
|
- type: mrr_at_1000 |
|
value: 31.436999999999998 |
|
- type: mrr_at_3 |
|
value: 24.490000000000002 |
|
- type: mrr_at_5 |
|
value: 27.857 |
|
- type: ndcg_at_1 |
|
value: 14.285999999999998 |
|
- type: ndcg_at_10 |
|
value: 16.672 |
|
- type: ndcg_at_100 |
|
value: 28.691 |
|
- type: ndcg_at_1000 |
|
value: 39.817 |
|
- type: ndcg_at_3 |
|
value: 15.277 |
|
- type: ndcg_at_5 |
|
value: 15.823 |
|
- type: precision_at_1 |
|
value: 16.326999999999998 |
|
- type: precision_at_10 |
|
value: 15.509999999999998 |
|
- type: precision_at_100 |
|
value: 6.49 |
|
- type: precision_at_1000 |
|
value: 1.4080000000000001 |
|
- type: precision_at_3 |
|
value: 16.326999999999998 |
|
- type: precision_at_5 |
|
value: 16.735 |
|
- type: recall_at_1 |
|
value: 1.385 |
|
- type: recall_at_10 |
|
value: 12.586 |
|
- type: recall_at_100 |
|
value: 40.765 |
|
- type: recall_at_1000 |
|
value: 75.198 |
|
- type: recall_at_3 |
|
value: 4.326 |
|
- type: recall_at_5 |
|
value: 7.074999999999999 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
metrics: |
|
- type: accuracy |
|
value: 59.4402 |
|
- type: ap |
|
value: 10.16922814263879 |
|
- type: f1 |
|
value: 45.374485104940476 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 54.25863044708545 |
|
- type: f1 |
|
value: 54.20154252609619 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 34.3883169293051 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 81.76670441676104 |
|
- type: cos_sim_ap |
|
value: 59.29878710961347 |
|
- type: cos_sim_f1 |
|
value: 57.33284971587474 |
|
- type: cos_sim_precision |
|
value: 52.9122963624191 |
|
- type: cos_sim_recall |
|
value: 62.559366754617415 |
|
- type: dot_accuracy |
|
value: 77.52279907015557 |
|
- type: dot_ap |
|
value: 34.17588904643467 |
|
- type: dot_f1 |
|
value: 41.063567529494634 |
|
- type: dot_precision |
|
value: 30.813953488372093 |
|
- type: dot_recall |
|
value: 61.53034300791557 |
|
- type: euclidean_accuracy |
|
value: 80.61631996185254 |
|
- type: euclidean_ap |
|
value: 54.00362361479352 |
|
- type: euclidean_f1 |
|
value: 53.99111751290361 |
|
- type: euclidean_precision |
|
value: 49.52653600528518 |
|
- type: euclidean_recall |
|
value: 59.340369393139845 |
|
- type: manhattan_accuracy |
|
value: 80.65208320915539 |
|
- type: manhattan_ap |
|
value: 54.18329507159467 |
|
- type: manhattan_f1 |
|
value: 53.85550960836779 |
|
- type: manhattan_precision |
|
value: 49.954873646209386 |
|
- type: manhattan_recall |
|
value: 58.41688654353562 |
|
- type: max_accuracy |
|
value: 81.76670441676104 |
|
- type: max_ap |
|
value: 59.29878710961347 |
|
- type: max_f1 |
|
value: 57.33284971587474 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 87.99433383785463 |
|
- type: cos_sim_ap |
|
value: 83.43513915159009 |
|
- type: cos_sim_f1 |
|
value: 76.3906784964842 |
|
- type: cos_sim_precision |
|
value: 73.19223985890653 |
|
- type: cos_sim_recall |
|
value: 79.88142901139513 |
|
- type: dot_accuracy |
|
value: 81.96142352621571 |
|
- type: dot_ap |
|
value: 67.78764755689359 |
|
- type: dot_f1 |
|
value: 64.42823356983445 |
|
- type: dot_precision |
|
value: 56.77801913931779 |
|
- type: dot_recall |
|
value: 74.46104096088698 |
|
- type: euclidean_accuracy |
|
value: 81.9478402607987 |
|
- type: euclidean_ap |
|
value: 67.13958457373279 |
|
- type: euclidean_f1 |
|
value: 60.45118343195266 |
|
- type: euclidean_precision |
|
value: 58.1625391403359 |
|
- type: euclidean_recall |
|
value: 62.92731752386819 |
|
- type: manhattan_accuracy |
|
value: 82.01769705437188 |
|
- type: manhattan_ap |
|
value: 67.24709477497046 |
|
- type: manhattan_f1 |
|
value: 60.4103846436714 |
|
- type: manhattan_precision |
|
value: 57.82063916654935 |
|
- type: manhattan_recall |
|
value: 63.24299353249153 |
|
- type: max_accuracy |
|
value: 87.99433383785463 |
|
- type: max_ap |
|
value: 83.43513915159009 |
|
- type: max_f1 |
|
value: 76.3906784964842 |
|
--- |
|
|
|
<br><br> |
|
|
|
<p align="center"> |
|
<img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px"> |
|
</p> |
|
|
|
|
|
<p align="center"> |
|
<b>The text embedding set trained by Jina AI, Finetuner team.</b> |
|
</p> |
|
|
|
|
|
## Intented Usage & Model Info |
|
|
|
`jina-embedding-s-en-v1` is a language model that has been trained using Jina AI's Linnaeus-Clean dataset. |
|
This dataset consists of 380 million pairs of sentences, which include both query-document pairs. |
|
These pairs were obtained from various domains and were carefully selected through a thorough cleaning process. |
|
The Linnaeus-Full dataset, from which the Linnaeus-Clean dataset is derived, originally contained 1.6 billion sentence pairs. |
|
|
|
The model has a range of use cases, including information retrieval, semantic textual similarity, text reranking, and more. |
|
|
|
With a compact size of just 35 million parameters, |
|
the model enables lightning-fast inference while still delivering impressive performance. |
|
Additionally, we provide the following options: |
|
|
|
- [`jina-embedding-t-en-v1`](https://huggingface.co/jinaai/jina-embedding-t-en-v1): 14 million parameters. |
|
- [`jina-embedding-s-en-v1`](https://huggingface.co/jinaai/jina-embedding-s-en-v1): 35 million parameters **(you are here)**. |
|
- [`jina-embedding-b-en-v1`](https://huggingface.co/jinaai/jina-embedding-b-en-v1): 110 million parameters. |
|
- [`jina-embedding-l-en-v1`](https://huggingface.co/jinaai/jina-embedding-l-en-v1): 330 million parameters. |
|
- `jina-embedding-1b-en-v1`: 1.2 billion parameters, 10 times bert-base (soon). |
|
- `jina-embedding-6b-en-v1`: 6 billion parameters, 30 times bert-base (soon). |
|
|
|
## Data & Parameters |
|
|
|
More info will be released together with the technique report. |
|
|
|
## Metrics |
|
|
|
We compared the model against `all-minilm-l6-v2`/`all-mpnet-base-v2` from sbert and `text-embeddings-ada-002` from OpenAI: |
|
|
|
|Name|param |dimension| |
|
|------------------------------|-----|------| |
|
|all-minilm-l6-v2|23m |384| |
|
|all-mpnet-base-v2 |110m |768| |
|
|ada-embedding-002|Unknown/OpenAI API |8192| |
|
|jina-embedding-t-en-v1|14m |312| |
|
|jina-embedding-s-en-v1|35m |512| |
|
|jina-embedding-b-en-v1|110m |768| |
|
|jina-embedding-l-en-v1|330m |1024| |
|
|
|
|
|
|Name|STS12|STS13|STS14|STS15|STS16|STS17|TRECOVID|Quora|SciFact| |
|
|------------------------------|-----|-----|-----|-----|-----|-----|--------|-----|-----| |
|
|all-minilm-l6-v2|0.724|0.806|0.756|0.854|0.79 |0.876|0.473 |0.876|0.645 | |
|
|all-mpnet-base-v2|0.726|0.835|**0.78** |0.857|0.8 |**0.906**|0.513 |0.875|0.656 | |
|
|ada-embedding-002|0.698|0.833|0.761|0.861|**0.86** |0.903|**0.685** |0.876|**0.726** | |
|
|jina-embedding-t-en-v1|0.714|0.775|0.723|0.825|0.771|0.863|0.479 |0.841|0.542 | |
|
|jina-embedding-s-en-v1|**0.743**|0.786|0.738|0.837|0.80|0.875|0.523 |0.857|0.524 | |
|
|jina-embedding-b-en-v1|0.735|0.792|0.752|0.851|0.801|0.89|0.546 |0.871|0.586 | |
|
|jina-embedding-l-en-v1|0.739|**0.844**|0.778|**0.863**|0.821|0.896|0.566 |**0.882**|0.608 | |
|
|
|
## Usage |
|
|
|
Use with Jina AI Finetuner |
|
|
|
```python |
|
!pip install finetuner |
|
import finetuner |
|
|
|
model = finetuner.build_model('jinaai/jina-embedding-s-en-v1') |
|
embeddings = finetuner.encode( |
|
model=model, |
|
data=['how is the weather today', 'What is the current weather like today?'] |
|
) |
|
print(finetuner.cos_sim(embeddings[0], embeddings[1])) |
|
``` |
|
|
|
Use directly with sentence-transformers: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
from sentence_transformers.util import cos_sim |
|
|
|
sentences = ['how is the weather today', 'What is the current weather like today?'] |
|
|
|
model = SentenceTransformer('jinaai/jina-embedding-s-en-v1') |
|
embeddings = model.encode(sentences) |
|
print(cos_sim(embeddings[0], embeddings[1])) |
|
``` |
|
|
|
## Fine-tuning |
|
|
|
Please consider [Finetuner](https://github.com/jina-ai/finetuner). |
|
|
|
## Plans |
|
|
|
1. The development of `jina-embedding-s-en-v2` is currently underway with two main objectives: improving performance and increasing the maximum sequence length. |
|
2. We are currently working on a bilingual embedding model that combines English and X language. The upcoming model will be called `jina-embedding-s/b/l-de-v1`. |
|
|
|
## Contact |
|
|
|
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas. |