Commit
·
5484c62
1
Parent(s):
cad11e0
Update README.md
Browse files
README.md
CHANGED
@@ -23,11 +23,11 @@ model-index:
|
|
23 |
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
24 |
metrics:
|
25 |
- type: accuracy
|
26 |
-
value: 66.
|
27 |
- type: ap
|
28 |
-
value: 28.
|
29 |
- type: f1
|
30 |
-
value:
|
31 |
- task:
|
32 |
type: Classification
|
33 |
dataset:
|
@@ -38,11 +38,11 @@ model-index:
|
|
38 |
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
39 |
metrics:
|
40 |
- type: accuracy
|
41 |
-
value:
|
42 |
- type: ap
|
43 |
-
value:
|
44 |
- type: f1
|
45 |
-
value:
|
46 |
- task:
|
47 |
type: Classification
|
48 |
dataset:
|
@@ -53,1066 +53,1066 @@ model-index:
|
|
53 |
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
54 |
metrics:
|
55 |
- type: accuracy
|
56 |
-
value:
|
57 |
- type: f1
|
58 |
-
value: 29.
|
59 |
- task:
|
60 |
type: Retrieval
|
61 |
dataset:
|
62 |
-
type:
|
63 |
-
name: MTEB
|
64 |
config: default
|
65 |
split: test
|
66 |
revision: None
|
67 |
metrics:
|
68 |
- type: map_at_1
|
69 |
-
value:
|
70 |
- type: map_at_10
|
71 |
-
value:
|
72 |
- type: map_at_100
|
73 |
-
value:
|
74 |
- type: map_at_1000
|
75 |
-
value:
|
76 |
- type: map_at_3
|
77 |
-
value:
|
78 |
- type: map_at_5
|
79 |
-
value:
|
80 |
- type: mrr_at_1
|
81 |
-
value:
|
82 |
- type: mrr_at_10
|
83 |
-
value:
|
84 |
- type: mrr_at_100
|
85 |
-
value:
|
86 |
- type: mrr_at_1000
|
87 |
-
value:
|
88 |
- type: mrr_at_3
|
89 |
-
value:
|
90 |
- type: mrr_at_5
|
91 |
-
value:
|
92 |
- type: ndcg_at_1
|
93 |
-
value:
|
94 |
- type: ndcg_at_10
|
95 |
-
value:
|
96 |
- type: ndcg_at_100
|
97 |
-
value:
|
98 |
- type: ndcg_at_1000
|
99 |
-
value:
|
100 |
- type: ndcg_at_3
|
101 |
-
value:
|
102 |
- type: ndcg_at_5
|
103 |
-
value:
|
104 |
- type: precision_at_1
|
105 |
-
value:
|
106 |
- type: precision_at_10
|
107 |
-
value:
|
108 |
- type: precision_at_100
|
109 |
-
value:
|
110 |
- type: precision_at_1000
|
111 |
-
value: 0.
|
112 |
- type: precision_at_3
|
113 |
-
value:
|
114 |
- type: precision_at_5
|
115 |
-
value:
|
116 |
- type: recall_at_1
|
117 |
-
value:
|
118 |
- type: recall_at_10
|
119 |
-
value:
|
120 |
- type: recall_at_100
|
121 |
-
value:
|
122 |
- type: recall_at_1000
|
123 |
-
value:
|
124 |
- type: recall_at_3
|
125 |
-
value:
|
126 |
- type: recall_at_5
|
127 |
-
value:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
- task:
|
129 |
type: Retrieval
|
130 |
dataset:
|
131 |
type: BeIR/cqadupstack
|
132 |
-
name: MTEB
|
133 |
config: default
|
134 |
split: test
|
135 |
revision: None
|
136 |
metrics:
|
137 |
- type: map_at_1
|
138 |
-
value:
|
139 |
- type: map_at_10
|
140 |
-
value:
|
141 |
- type: map_at_100
|
142 |
-
value:
|
143 |
- type: map_at_1000
|
144 |
-
value:
|
145 |
- type: map_at_3
|
146 |
-
value:
|
147 |
- type: map_at_5
|
148 |
-
value:
|
149 |
- type: mrr_at_1
|
150 |
-
value:
|
151 |
- type: mrr_at_10
|
152 |
-
value: 45.
|
153 |
- type: mrr_at_100
|
154 |
-
value:
|
155 |
- type: mrr_at_1000
|
156 |
-
value:
|
157 |
- type: mrr_at_3
|
158 |
-
value: 42.
|
159 |
- type: mrr_at_5
|
160 |
-
value: 44.
|
161 |
- type: ndcg_at_1
|
162 |
-
value:
|
163 |
- type: ndcg_at_10
|
164 |
-
value:
|
165 |
- type: ndcg_at_100
|
166 |
-
value:
|
167 |
- type: ndcg_at_1000
|
168 |
-
value:
|
169 |
- type: ndcg_at_3
|
170 |
-
value:
|
171 |
- type: ndcg_at_5
|
172 |
-
value:
|
173 |
- type: precision_at_1
|
174 |
-
value:
|
175 |
- type: precision_at_10
|
176 |
-
value: 8.
|
177 |
- type: precision_at_100
|
178 |
-
value: 1.
|
179 |
- type: precision_at_1000
|
180 |
-
value: 0.
|
181 |
- type: precision_at_3
|
182 |
-
value: 19.
|
183 |
- type: precision_at_5
|
184 |
-
value: 13.
|
185 |
- type: recall_at_1
|
186 |
-
value:
|
187 |
- type: recall_at_10
|
188 |
-
value:
|
189 |
- type: recall_at_100
|
190 |
-
value:
|
191 |
- type: recall_at_1000
|
192 |
-
value:
|
193 |
- type: recall_at_3
|
194 |
-
value:
|
195 |
- type: recall_at_5
|
196 |
-
value:
|
197 |
- task:
|
198 |
type: Retrieval
|
199 |
dataset:
|
200 |
type: BeIR/cqadupstack
|
201 |
-
name: MTEB
|
202 |
config: default
|
203 |
split: test
|
204 |
revision: None
|
205 |
metrics:
|
206 |
- type: map_at_1
|
207 |
-
value:
|
208 |
- type: map_at_10
|
209 |
-
value:
|
210 |
- type: map_at_100
|
211 |
-
value:
|
212 |
- type: map_at_1000
|
213 |
-
value:
|
214 |
- type: map_at_3
|
215 |
-
value:
|
216 |
- type: map_at_5
|
217 |
-
value:
|
218 |
- type: mrr_at_1
|
219 |
-
value:
|
220 |
- type: mrr_at_10
|
221 |
-
value:
|
222 |
- type: mrr_at_100
|
223 |
-
value:
|
224 |
- type: mrr_at_1000
|
225 |
-
value:
|
226 |
- type: mrr_at_3
|
227 |
-
value:
|
228 |
- type: mrr_at_5
|
229 |
-
value:
|
230 |
- type: ndcg_at_1
|
231 |
-
value:
|
232 |
- type: ndcg_at_10
|
233 |
-
value:
|
234 |
- type: ndcg_at_100
|
235 |
-
value:
|
236 |
- type: ndcg_at_1000
|
237 |
-
value:
|
238 |
- type: ndcg_at_3
|
239 |
-
value:
|
240 |
- type: ndcg_at_5
|
241 |
-
value:
|
242 |
- type: precision_at_1
|
243 |
-
value:
|
244 |
- type: precision_at_10
|
245 |
-
value:
|
246 |
- type: precision_at_100
|
247 |
-
value: 1.
|
248 |
- type: precision_at_1000
|
249 |
-
value: 0.
|
250 |
- type: precision_at_3
|
251 |
-
value:
|
252 |
- type: precision_at_5
|
253 |
-
value:
|
254 |
- type: recall_at_1
|
255 |
-
value:
|
256 |
- type: recall_at_10
|
257 |
-
value:
|
258 |
- type: recall_at_100
|
259 |
-
value:
|
260 |
- type: recall_at_1000
|
261 |
-
value:
|
262 |
- type: recall_at_3
|
263 |
-
value:
|
264 |
- type: recall_at_5
|
265 |
-
value:
|
266 |
- task:
|
267 |
type: Retrieval
|
268 |
dataset:
|
269 |
type: BeIR/cqadupstack
|
270 |
-
name: MTEB
|
271 |
config: default
|
272 |
split: test
|
273 |
revision: None
|
274 |
metrics:
|
275 |
- type: map_at_1
|
276 |
-
value:
|
277 |
- type: map_at_10
|
278 |
-
value:
|
279 |
- type: map_at_100
|
280 |
-
value:
|
281 |
- type: map_at_1000
|
282 |
-
value:
|
283 |
- type: map_at_3
|
284 |
-
value:
|
285 |
- type: map_at_5
|
286 |
-
value:
|
287 |
- type: mrr_at_1
|
288 |
-
value:
|
289 |
- type: mrr_at_10
|
290 |
-
value:
|
291 |
- type: mrr_at_100
|
292 |
-
value:
|
293 |
- type: mrr_at_1000
|
294 |
-
value:
|
295 |
- type: mrr_at_3
|
296 |
-
value:
|
297 |
- type: mrr_at_5
|
298 |
-
value:
|
299 |
- type: ndcg_at_1
|
300 |
-
value:
|
301 |
- type: ndcg_at_10
|
302 |
-
value:
|
303 |
- type: ndcg_at_100
|
304 |
-
value:
|
305 |
- type: ndcg_at_1000
|
306 |
-
value:
|
307 |
- type: ndcg_at_3
|
308 |
-
value:
|
309 |
- type: ndcg_at_5
|
310 |
-
value:
|
311 |
- type: precision_at_1
|
312 |
-
value:
|
313 |
- type: precision_at_10
|
314 |
-
value:
|
315 |
- type: precision_at_100
|
316 |
-
value:
|
317 |
- type: precision_at_1000
|
318 |
-
value: 0.
|
319 |
- type: precision_at_3
|
320 |
-
value:
|
321 |
- type: precision_at_5
|
322 |
-
value:
|
323 |
- type: recall_at_1
|
324 |
-
value:
|
325 |
- type: recall_at_10
|
326 |
-
value:
|
327 |
- type: recall_at_100
|
328 |
-
value:
|
329 |
- type: recall_at_1000
|
330 |
-
value:
|
331 |
- type: recall_at_3
|
332 |
-
value:
|
333 |
- type: recall_at_5
|
334 |
-
value:
|
335 |
- task:
|
336 |
type: Retrieval
|
337 |
dataset:
|
338 |
type: BeIR/cqadupstack
|
339 |
-
name: MTEB
|
340 |
config: default
|
341 |
split: test
|
342 |
revision: None
|
343 |
metrics:
|
344 |
- type: map_at_1
|
345 |
-
value:
|
346 |
- type: map_at_10
|
347 |
-
value:
|
348 |
- type: map_at_100
|
349 |
-
value:
|
350 |
- type: map_at_1000
|
351 |
-
value:
|
352 |
- type: map_at_3
|
353 |
-
value:
|
354 |
- type: map_at_5
|
355 |
-
value:
|
356 |
- type: mrr_at_1
|
357 |
-
value:
|
358 |
- type: mrr_at_10
|
359 |
-
value:
|
360 |
- type: mrr_at_100
|
361 |
-
value:
|
362 |
- type: mrr_at_1000
|
363 |
-
value:
|
364 |
- type: mrr_at_3
|
365 |
-
value:
|
366 |
- type: mrr_at_5
|
367 |
-
value:
|
368 |
- type: ndcg_at_1
|
369 |
-
value:
|
370 |
- type: ndcg_at_10
|
371 |
-
value:
|
372 |
- type: ndcg_at_100
|
373 |
-
value:
|
374 |
- type: ndcg_at_1000
|
375 |
-
value:
|
376 |
- type: ndcg_at_3
|
377 |
-
value:
|
378 |
- type: ndcg_at_5
|
379 |
-
value:
|
380 |
- type: precision_at_1
|
381 |
-
value:
|
382 |
- type: precision_at_10
|
383 |
-
value: 5.
|
384 |
- type: precision_at_100
|
385 |
-
value: 0.
|
386 |
- type: precision_at_1000
|
387 |
-
value: 0.
|
388 |
- type: precision_at_3
|
389 |
-
value:
|
390 |
- type: precision_at_5
|
391 |
-
value:
|
392 |
- type: recall_at_1
|
393 |
-
value:
|
394 |
- type: recall_at_10
|
395 |
-
value:
|
396 |
- type: recall_at_100
|
397 |
-
value:
|
398 |
- type: recall_at_1000
|
399 |
-
value:
|
400 |
- type: recall_at_3
|
401 |
-
value:
|
402 |
- type: recall_at_5
|
403 |
-
value:
|
404 |
- task:
|
405 |
type: Retrieval
|
406 |
dataset:
|
407 |
type: BeIR/cqadupstack
|
408 |
-
name: MTEB
|
409 |
config: default
|
410 |
split: test
|
411 |
revision: None
|
412 |
metrics:
|
413 |
- type: map_at_1
|
414 |
-
value:
|
415 |
- type: map_at_10
|
416 |
-
value:
|
417 |
- type: map_at_100
|
418 |
-
value:
|
419 |
- type: map_at_1000
|
420 |
-
value:
|
421 |
- type: map_at_3
|
422 |
-
value:
|
423 |
- type: map_at_5
|
424 |
-
value:
|
425 |
- type: mrr_at_1
|
426 |
-
value:
|
427 |
- type: mrr_at_10
|
428 |
-
value:
|
429 |
- type: mrr_at_100
|
430 |
-
value:
|
431 |
- type: mrr_at_1000
|
432 |
-
value:
|
433 |
- type: mrr_at_3
|
434 |
-
value:
|
435 |
- type: mrr_at_5
|
436 |
-
value:
|
437 |
- type: ndcg_at_1
|
438 |
-
value:
|
439 |
- type: ndcg_at_10
|
440 |
-
value:
|
441 |
- type: ndcg_at_100
|
442 |
-
value:
|
443 |
- type: ndcg_at_1000
|
444 |
-
value:
|
445 |
- type: ndcg_at_3
|
446 |
-
value:
|
447 |
- type: ndcg_at_5
|
448 |
-
value:
|
449 |
- type: precision_at_1
|
450 |
-
value:
|
451 |
- type: precision_at_10
|
452 |
-
value:
|
453 |
- type: precision_at_100
|
454 |
-
value:
|
455 |
- type: precision_at_1000
|
456 |
-
value: 0.
|
457 |
- type: precision_at_3
|
458 |
-
value:
|
459 |
- type: precision_at_5
|
460 |
-
value:
|
461 |
- type: recall_at_1
|
462 |
-
value:
|
463 |
- type: recall_at_10
|
464 |
-
value:
|
465 |
- type: recall_at_100
|
466 |
-
value:
|
467 |
- type: recall_at_1000
|
468 |
-
value:
|
469 |
- type: recall_at_3
|
470 |
-
value:
|
471 |
- type: recall_at_5
|
472 |
-
value:
|
473 |
- task:
|
474 |
type: Retrieval
|
475 |
dataset:
|
476 |
type: BeIR/cqadupstack
|
477 |
-
name: MTEB
|
478 |
config: default
|
479 |
split: test
|
480 |
revision: None
|
481 |
metrics:
|
482 |
- type: map_at_1
|
483 |
-
value:
|
484 |
- type: map_at_10
|
485 |
-
value:
|
486 |
- type: map_at_100
|
487 |
-
value:
|
488 |
- type: map_at_1000
|
489 |
-
value:
|
490 |
- type: map_at_3
|
491 |
-
value:
|
492 |
- type: map_at_5
|
493 |
-
value:
|
494 |
- type: mrr_at_1
|
495 |
-
value:
|
496 |
- type: mrr_at_10
|
497 |
-
value:
|
498 |
- type: mrr_at_100
|
499 |
-
value:
|
500 |
- type: mrr_at_1000
|
501 |
-
value:
|
502 |
- type: mrr_at_3
|
503 |
-
value:
|
504 |
- type: mrr_at_5
|
505 |
-
value:
|
506 |
- type: ndcg_at_1
|
507 |
-
value:
|
508 |
- type: ndcg_at_10
|
509 |
-
value:
|
510 |
- type: ndcg_at_100
|
511 |
-
value:
|
512 |
- type: ndcg_at_1000
|
513 |
-
value:
|
514 |
- type: ndcg_at_3
|
515 |
-
value:
|
516 |
- type: ndcg_at_5
|
517 |
-
value:
|
518 |
- type: precision_at_1
|
519 |
-
value:
|
520 |
- type: precision_at_10
|
521 |
-
value: 7.
|
522 |
- type: precision_at_100
|
523 |
-
value: 1.
|
524 |
- type: precision_at_1000
|
525 |
-
value: 0.
|
526 |
- type: precision_at_3
|
527 |
-
value:
|
528 |
- type: precision_at_5
|
529 |
-
value: 11.
|
530 |
- type: recall_at_1
|
531 |
-
value:
|
532 |
- type: recall_at_10
|
533 |
-
value: 51.
|
534 |
- type: recall_at_100
|
535 |
-
value: 74.
|
536 |
- type: recall_at_1000
|
537 |
-
value:
|
538 |
- type: recall_at_3
|
539 |
-
value:
|
540 |
- type: recall_at_5
|
541 |
-
value: 43.
|
542 |
- task:
|
543 |
type: Retrieval
|
544 |
dataset:
|
545 |
type: BeIR/cqadupstack
|
546 |
-
name: MTEB
|
547 |
config: default
|
548 |
split: test
|
549 |
revision: None
|
550 |
metrics:
|
551 |
- type: map_at_1
|
552 |
-
value:
|
553 |
- type: map_at_10
|
554 |
-
value:
|
555 |
- type: map_at_100
|
556 |
-
value:
|
557 |
- type: map_at_1000
|
558 |
-
value:
|
559 |
- type: map_at_3
|
560 |
-
value:
|
561 |
- type: map_at_5
|
562 |
-
value:
|
563 |
- type: mrr_at_1
|
564 |
-
value:
|
565 |
- type: mrr_at_10
|
566 |
-
value:
|
567 |
- type: mrr_at_100
|
568 |
-
value:
|
569 |
- type: mrr_at_1000
|
570 |
-
value:
|
571 |
- type: mrr_at_3
|
572 |
-
value:
|
573 |
- type: mrr_at_5
|
574 |
-
value:
|
575 |
- type: ndcg_at_1
|
576 |
-
value:
|
577 |
- type: ndcg_at_10
|
578 |
-
value:
|
579 |
- type: ndcg_at_100
|
580 |
-
value:
|
581 |
- type: ndcg_at_1000
|
582 |
-
value:
|
583 |
- type: ndcg_at_3
|
584 |
-
value:
|
585 |
- type: ndcg_at_5
|
586 |
-
value:
|
587 |
- type: precision_at_1
|
588 |
-
value:
|
589 |
- type: precision_at_10
|
590 |
-
value:
|
591 |
- type: precision_at_100
|
592 |
-
value: 1.
|
593 |
- type: precision_at_1000
|
594 |
-
value: 0.
|
595 |
- type: precision_at_3
|
596 |
-
value:
|
597 |
- type: precision_at_5
|
598 |
-
value:
|
599 |
- type: recall_at_1
|
600 |
-
value:
|
601 |
- type: recall_at_10
|
602 |
-
value:
|
603 |
- type: recall_at_100
|
604 |
-
value:
|
605 |
- type: recall_at_1000
|
606 |
-
value: 90.
|
607 |
- type: recall_at_3
|
608 |
-
value:
|
609 |
- type: recall_at_5
|
610 |
-
value:
|
611 |
- task:
|
612 |
type: Retrieval
|
613 |
dataset:
|
614 |
type: BeIR/cqadupstack
|
615 |
-
name: MTEB
|
616 |
config: default
|
617 |
split: test
|
618 |
revision: None
|
619 |
metrics:
|
620 |
- type: map_at_1
|
621 |
-
value:
|
622 |
- type: map_at_10
|
623 |
-
value:
|
624 |
- type: map_at_100
|
625 |
-
value:
|
626 |
- type: map_at_1000
|
627 |
-
value:
|
628 |
- type: map_at_3
|
629 |
-
value:
|
630 |
- type: map_at_5
|
631 |
-
value:
|
632 |
- type: mrr_at_1
|
633 |
-
value:
|
634 |
- type: mrr_at_10
|
635 |
-
value:
|
636 |
- type: mrr_at_100
|
637 |
-
value:
|
638 |
- type: mrr_at_1000
|
639 |
-
value:
|
640 |
- type: mrr_at_3
|
641 |
-
value:
|
642 |
- type: mrr_at_5
|
643 |
-
value:
|
644 |
- type: ndcg_at_1
|
645 |
-
value:
|
646 |
- type: ndcg_at_10
|
647 |
-
value:
|
648 |
- type: ndcg_at_100
|
649 |
-
value:
|
650 |
- type: ndcg_at_1000
|
651 |
-
value:
|
652 |
- type: ndcg_at_3
|
653 |
-
value:
|
654 |
- type: ndcg_at_5
|
655 |
-
value:
|
656 |
- type: precision_at_1
|
657 |
-
value:
|
658 |
- type: precision_at_10
|
659 |
-
value:
|
660 |
- type: precision_at_100
|
661 |
-
value:
|
662 |
- type: precision_at_1000
|
663 |
-
value: 0.
|
664 |
- type: precision_at_3
|
665 |
-
value:
|
666 |
- type: precision_at_5
|
667 |
-
value:
|
668 |
- type: recall_at_1
|
669 |
-
value:
|
670 |
- type: recall_at_10
|
671 |
-
value:
|
672 |
- type: recall_at_100
|
673 |
-
value:
|
674 |
- type: recall_at_1000
|
675 |
-
value:
|
676 |
- type: recall_at_3
|
677 |
-
value:
|
678 |
- type: recall_at_5
|
679 |
-
value:
|
680 |
- task:
|
681 |
type: Retrieval
|
682 |
dataset:
|
683 |
type: BeIR/cqadupstack
|
684 |
-
name: MTEB
|
685 |
config: default
|
686 |
split: test
|
687 |
revision: None
|
688 |
metrics:
|
689 |
- type: map_at_1
|
690 |
-
value:
|
691 |
- type: map_at_10
|
692 |
-
value:
|
693 |
- type: map_at_100
|
694 |
-
value:
|
695 |
- type: map_at_1000
|
696 |
-
value:
|
697 |
- type: map_at_3
|
698 |
-
value:
|
699 |
- type: map_at_5
|
700 |
-
value:
|
701 |
- type: mrr_at_1
|
702 |
-
value:
|
703 |
- type: mrr_at_10
|
704 |
-
value:
|
705 |
- type: mrr_at_100
|
706 |
-
value:
|
707 |
- type: mrr_at_1000
|
708 |
-
value:
|
709 |
- type: mrr_at_3
|
710 |
-
value:
|
711 |
- type: mrr_at_5
|
712 |
-
value:
|
713 |
- type: ndcg_at_1
|
714 |
-
value:
|
715 |
- type: ndcg_at_10
|
716 |
-
value:
|
717 |
- type: ndcg_at_100
|
718 |
-
value:
|
719 |
- type: ndcg_at_1000
|
720 |
-
value:
|
721 |
- type: ndcg_at_3
|
722 |
-
value:
|
723 |
- type: ndcg_at_5
|
724 |
-
value:
|
725 |
- type: precision_at_1
|
726 |
-
value:
|
727 |
- type: precision_at_10
|
728 |
-
value:
|
729 |
- type: precision_at_100
|
730 |
-
value: 0.
|
731 |
- type: precision_at_1000
|
732 |
-
value: 0.
|
733 |
- type: precision_at_3
|
734 |
-
value: 11.
|
735 |
- type: precision_at_5
|
736 |
-
value: 8.
|
737 |
- type: recall_at_1
|
738 |
-
value:
|
739 |
- type: recall_at_10
|
740 |
-
value:
|
741 |
- type: recall_at_100
|
742 |
-
value:
|
743 |
- type: recall_at_1000
|
744 |
-
value:
|
745 |
- type: recall_at_3
|
746 |
-
value:
|
747 |
- type: recall_at_5
|
748 |
-
value:
|
749 |
- task:
|
750 |
type: Retrieval
|
751 |
dataset:
|
752 |
type: BeIR/cqadupstack
|
753 |
-
name: MTEB
|
754 |
config: default
|
755 |
split: test
|
756 |
revision: None
|
757 |
metrics:
|
758 |
- type: map_at_1
|
759 |
-
value:
|
760 |
- type: map_at_10
|
761 |
-
value:
|
762 |
- type: map_at_100
|
763 |
-
value:
|
764 |
- type: map_at_1000
|
765 |
-
value:
|
766 |
- type: map_at_3
|
767 |
-
value:
|
768 |
- type: map_at_5
|
769 |
-
value:
|
770 |
- type: mrr_at_1
|
771 |
-
value:
|
772 |
- type: mrr_at_10
|
773 |
-
value:
|
774 |
- type: mrr_at_100
|
775 |
-
value:
|
776 |
- type: mrr_at_1000
|
777 |
-
value:
|
778 |
- type: mrr_at_3
|
779 |
-
value:
|
780 |
- type: mrr_at_5
|
781 |
-
value:
|
782 |
- type: ndcg_at_1
|
783 |
-
value:
|
784 |
- type: ndcg_at_10
|
785 |
-
value:
|
786 |
- type: ndcg_at_100
|
787 |
-
value:
|
788 |
- type: ndcg_at_1000
|
789 |
-
value:
|
790 |
- type: ndcg_at_3
|
791 |
-
value:
|
792 |
- type: ndcg_at_5
|
793 |
-
value:
|
794 |
- type: precision_at_1
|
795 |
-
value:
|
796 |
- type: precision_at_10
|
797 |
-
value:
|
798 |
- type: precision_at_100
|
799 |
-
value:
|
800 |
- type: precision_at_1000
|
801 |
-
value: 0.
|
802 |
- type: precision_at_3
|
803 |
-
value:
|
804 |
- type: precision_at_5
|
805 |
-
value:
|
806 |
- type: recall_at_1
|
807 |
-
value:
|
808 |
- type: recall_at_10
|
809 |
-
value:
|
810 |
- type: recall_at_100
|
811 |
-
value:
|
812 |
- type: recall_at_1000
|
813 |
-
value:
|
814 |
- type: recall_at_3
|
815 |
-
value:
|
816 |
- type: recall_at_5
|
817 |
-
value:
|
818 |
- task:
|
819 |
type: Retrieval
|
820 |
dataset:
|
821 |
type: BeIR/cqadupstack
|
822 |
-
name: MTEB
|
823 |
config: default
|
824 |
split: test
|
825 |
revision: None
|
826 |
metrics:
|
827 |
- type: map_at_1
|
828 |
-
value:
|
829 |
- type: map_at_10
|
830 |
-
value:
|
831 |
- type: map_at_100
|
832 |
-
value:
|
833 |
- type: map_at_1000
|
834 |
-
value:
|
835 |
- type: map_at_3
|
836 |
-
value:
|
837 |
- type: map_at_5
|
838 |
-
value:
|
839 |
- type: mrr_at_1
|
840 |
-
value:
|
841 |
- type: mrr_at_10
|
842 |
-
value:
|
843 |
- type: mrr_at_100
|
844 |
-
value:
|
845 |
- type: mrr_at_1000
|
846 |
-
value:
|
847 |
- type: mrr_at_3
|
848 |
-
value:
|
849 |
- type: mrr_at_5
|
850 |
-
value:
|
851 |
- type: ndcg_at_1
|
852 |
-
value:
|
853 |
- type: ndcg_at_10
|
854 |
-
value:
|
855 |
- type: ndcg_at_100
|
856 |
-
value:
|
857 |
- type: ndcg_at_1000
|
858 |
-
value:
|
859 |
- type: ndcg_at_3
|
860 |
-
value:
|
861 |
- type: ndcg_at_5
|
862 |
-
value:
|
863 |
- type: precision_at_1
|
864 |
-
value:
|
865 |
- type: precision_at_10
|
866 |
-
value:
|
867 |
- type: precision_at_100
|
868 |
-
value: 1.
|
869 |
- type: precision_at_1000
|
870 |
-
value: 0.
|
871 |
- type: precision_at_3
|
872 |
-
value:
|
873 |
- type: precision_at_5
|
874 |
-
value:
|
875 |
- type: recall_at_1
|
876 |
-
value:
|
877 |
- type: recall_at_10
|
878 |
-
value:
|
879 |
- type: recall_at_100
|
880 |
-
value:
|
881 |
- type: recall_at_1000
|
882 |
-
value:
|
883 |
- type: recall_at_3
|
884 |
-
value:
|
885 |
- type: recall_at_5
|
886 |
-
value:
|
887 |
- task:
|
888 |
type: Retrieval
|
889 |
dataset:
|
890 |
type: BeIR/cqadupstack
|
891 |
-
name: MTEB
|
892 |
config: default
|
893 |
split: test
|
894 |
revision: None
|
895 |
metrics:
|
896 |
- type: map_at_1
|
897 |
-
value:
|
898 |
- type: map_at_10
|
899 |
-
value:
|
900 |
- type: map_at_100
|
901 |
-
value:
|
902 |
- type: map_at_1000
|
903 |
-
value:
|
904 |
- type: map_at_3
|
905 |
-
value:
|
906 |
- type: map_at_5
|
907 |
-
value:
|
908 |
- type: mrr_at_1
|
909 |
-
value:
|
910 |
- type: mrr_at_10
|
911 |
-
value:
|
912 |
- type: mrr_at_100
|
913 |
-
value:
|
914 |
- type: mrr_at_1000
|
915 |
-
value:
|
916 |
- type: mrr_at_3
|
917 |
-
value:
|
918 |
- type: mrr_at_5
|
919 |
-
value:
|
920 |
- type: ndcg_at_1
|
921 |
-
value:
|
922 |
- type: ndcg_at_10
|
923 |
-
value:
|
924 |
- type: ndcg_at_100
|
925 |
-
value:
|
926 |
- type: ndcg_at_1000
|
927 |
-
value:
|
928 |
- type: ndcg_at_3
|
929 |
-
value:
|
930 |
- type: ndcg_at_5
|
931 |
-
value:
|
932 |
- type: precision_at_1
|
933 |
-
value:
|
934 |
- type: precision_at_10
|
935 |
-
value:
|
936 |
- type: precision_at_100
|
937 |
-
value:
|
938 |
- type: precision_at_1000
|
939 |
-
value: 0.
|
940 |
- type: precision_at_3
|
941 |
-
value:
|
942 |
- type: precision_at_5
|
943 |
-
value:
|
944 |
- type: recall_at_1
|
945 |
-
value:
|
946 |
- type: recall_at_10
|
947 |
-
value:
|
948 |
- type: recall_at_100
|
949 |
-
value:
|
950 |
- type: recall_at_1000
|
951 |
-
value:
|
952 |
- type: recall_at_3
|
953 |
-
value:
|
954 |
- type: recall_at_5
|
955 |
-
value:
|
956 |
- task:
|
957 |
type: Retrieval
|
958 |
dataset:
|
959 |
-
type:
|
960 |
-
name: MTEB
|
961 |
config: default
|
962 |
split: test
|
963 |
revision: None
|
964 |
metrics:
|
965 |
- type: map_at_1
|
966 |
-
value:
|
967 |
- type: map_at_10
|
968 |
-
value:
|
969 |
- type: map_at_100
|
970 |
-
value:
|
971 |
- type: map_at_1000
|
972 |
-
value:
|
973 |
- type: map_at_3
|
974 |
-
value:
|
975 |
- type: map_at_5
|
976 |
-
value:
|
977 |
- type: mrr_at_1
|
978 |
-
value:
|
979 |
- type: mrr_at_10
|
980 |
-
value:
|
981 |
- type: mrr_at_100
|
982 |
-
value:
|
983 |
- type: mrr_at_1000
|
984 |
-
value:
|
985 |
- type: mrr_at_3
|
986 |
-
value:
|
987 |
- type: mrr_at_5
|
988 |
-
value:
|
989 |
- type: ndcg_at_1
|
990 |
-
value:
|
991 |
- type: ndcg_at_10
|
992 |
-
value:
|
993 |
- type: ndcg_at_100
|
994 |
-
value:
|
995 |
- type: ndcg_at_1000
|
996 |
-
value:
|
997 |
- type: ndcg_at_3
|
998 |
-
value:
|
999 |
- type: ndcg_at_5
|
1000 |
-
value:
|
1001 |
- type: precision_at_1
|
1002 |
-
value:
|
1003 |
- type: precision_at_10
|
1004 |
-
value:
|
1005 |
- type: precision_at_100
|
1006 |
-
value: 0.
|
1007 |
- type: precision_at_1000
|
1008 |
-
value: 0.
|
1009 |
- type: precision_at_3
|
1010 |
-
value:
|
1011 |
- type: precision_at_5
|
1012 |
-
value:
|
1013 |
- type: recall_at_1
|
1014 |
-
value:
|
1015 |
- type: recall_at_10
|
1016 |
-
value:
|
1017 |
- type: recall_at_100
|
1018 |
-
value:
|
1019 |
- type: recall_at_1000
|
1020 |
-
value:
|
1021 |
- type: recall_at_3
|
1022 |
-
value:
|
1023 |
- type: recall_at_5
|
1024 |
-
value:
|
1025 |
-
- task:
|
1026 |
-
type: Clustering
|
1027 |
-
dataset:
|
1028 |
-
type: mteb/arxiv-clustering-p2p
|
1029 |
-
name: MTEB ArxivClusteringP2P
|
1030 |
-
config: default
|
1031 |
-
split: test
|
1032 |
-
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
1033 |
-
metrics:
|
1034 |
-
- type: v_measure
|
1035 |
-
value: 39.2179862062943
|
1036 |
-
- task:
|
1037 |
-
type: Clustering
|
1038 |
-
dataset:
|
1039 |
-
type: mteb/arxiv-clustering-s2s
|
1040 |
-
name: MTEB ArxivClusteringS2S
|
1041 |
-
config: default
|
1042 |
-
split: test
|
1043 |
-
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
1044 |
-
metrics:
|
1045 |
-
- type: v_measure
|
1046 |
-
value: 29.87826673088078
|
1047 |
-
- task:
|
1048 |
-
type: Reranking
|
1049 |
-
dataset:
|
1050 |
-
type: mteb/askubuntudupquestions-reranking
|
1051 |
-
name: MTEB AskUbuntuDupQuestions
|
1052 |
-
config: default
|
1053 |
-
split: test
|
1054 |
-
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
1055 |
-
metrics:
|
1056 |
-
- type: map
|
1057 |
-
value: 62.72401299412015
|
1058 |
-
- type: mrr
|
1059 |
-
value: 75.45167743921206
|
1060 |
-
- task:
|
1061 |
-
type: STS
|
1062 |
-
dataset:
|
1063 |
-
type: mteb/biosses-sts
|
1064 |
-
name: MTEB BIOSSES
|
1065 |
-
config: default
|
1066 |
-
split: test
|
1067 |
-
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
1068 |
-
metrics:
|
1069 |
-
- type: cos_sim_pearson
|
1070 |
-
value: 85.96510928112639
|
1071 |
-
- type: cos_sim_spearman
|
1072 |
-
value: 82.64224450538681
|
1073 |
-
- type: euclidean_pearson
|
1074 |
-
value: 52.03458755006108
|
1075 |
-
- type: euclidean_spearman
|
1076 |
-
value: 52.83192670285616
|
1077 |
-
- type: manhattan_pearson
|
1078 |
-
value: 52.14561955040935
|
1079 |
-
- type: manhattan_spearman
|
1080 |
-
value: 52.9584356095438
|
1081 |
-
- task:
|
1082 |
-
type: Classification
|
1083 |
-
dataset:
|
1084 |
-
type: mteb/banking77
|
1085 |
-
name: MTEB Banking77Classification
|
1086 |
-
config: default
|
1087 |
-
split: test
|
1088 |
-
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
1089 |
-
metrics:
|
1090 |
-
- type: accuracy
|
1091 |
-
value: 84.11363636363636
|
1092 |
-
- type: f1
|
1093 |
-
value: 84.01098114920124
|
1094 |
-
- task:
|
1095 |
-
type: Clustering
|
1096 |
-
dataset:
|
1097 |
-
type: mteb/biorxiv-clustering-p2p
|
1098 |
-
name: MTEB BiorxivClusteringP2P
|
1099 |
-
config: default
|
1100 |
-
split: test
|
1101 |
-
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
1102 |
-
metrics:
|
1103 |
-
- type: v_measure
|
1104 |
-
value: 32.991971466919026
|
1105 |
-
- task:
|
1106 |
-
type: Clustering
|
1107 |
-
dataset:
|
1108 |
-
type: mteb/biorxiv-clustering-s2s
|
1109 |
-
name: MTEB BiorxivClusteringS2S
|
1110 |
-
config: default
|
1111 |
-
split: test
|
1112 |
-
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
1113 |
-
metrics:
|
1114 |
-
- type: v_measure
|
1115 |
-
value: 26.48807922559519
|
1116 |
- task:
|
1117 |
type: Retrieval
|
1118 |
dataset:
|
@@ -1123,65 +1123,65 @@ model-index:
|
|
1123 |
revision: None
|
1124 |
metrics:
|
1125 |
- type: map_at_1
|
1126 |
-
value:
|
1127 |
- type: map_at_10
|
1128 |
-
value: 14.
|
1129 |
- type: map_at_100
|
1130 |
-
value:
|
1131 |
- type: map_at_1000
|
1132 |
-
value:
|
1133 |
- type: map_at_3
|
1134 |
-
value:
|
1135 |
- type: map_at_5
|
1136 |
-
value:
|
1137 |
- type: mrr_at_1
|
1138 |
-
value:
|
1139 |
- type: mrr_at_10
|
1140 |
-
value:
|
1141 |
- type: mrr_at_100
|
1142 |
-
value:
|
1143 |
- type: mrr_at_1000
|
1144 |
-
value:
|
1145 |
- type: mrr_at_3
|
1146 |
-
value:
|
1147 |
- type: mrr_at_5
|
1148 |
-
value:
|
1149 |
- type: ndcg_at_1
|
1150 |
-
value:
|
1151 |
- type: ndcg_at_10
|
1152 |
-
value:
|
1153 |
- type: ndcg_at_100
|
1154 |
-
value:
|
1155 |
- type: ndcg_at_1000
|
1156 |
-
value: 30.
|
1157 |
- type: ndcg_at_3
|
1158 |
-
value:
|
1159 |
- type: ndcg_at_5
|
1160 |
-
value: 18.
|
1161 |
- type: precision_at_1
|
1162 |
-
value:
|
1163 |
- type: precision_at_10
|
1164 |
-
value: 6.
|
1165 |
- type: precision_at_100
|
1166 |
-
value: 1.
|
1167 |
- type: precision_at_1000
|
1168 |
-
value: 0.
|
1169 |
- type: precision_at_3
|
1170 |
-
value: 12.
|
1171 |
- type: precision_at_5
|
1172 |
-
value: 9.
|
1173 |
- type: recall_at_1
|
1174 |
-
value:
|
1175 |
- type: recall_at_10
|
1176 |
-
value: 26.
|
1177 |
- type: recall_at_100
|
1178 |
-
value: 47.
|
1179 |
- type: recall_at_1000
|
1180 |
-
value:
|
1181 |
- type: recall_at_3
|
1182 |
-
value: 16.
|
1183 |
- type: recall_at_5
|
1184 |
-
value:
|
1185 |
- task:
|
1186 |
type: Retrieval
|
1187 |
dataset:
|
@@ -1192,65 +1192,65 @@ model-index:
|
|
1192 |
revision: None
|
1193 |
metrics:
|
1194 |
- type: map_at_1
|
1195 |
-
value: 7.
|
1196 |
- type: map_at_10
|
1197 |
-
value:
|
1198 |
- type: map_at_100
|
1199 |
-
value:
|
1200 |
- type: map_at_1000
|
1201 |
-
value:
|
1202 |
- type: map_at_3
|
1203 |
-
value:
|
1204 |
- type: map_at_5
|
1205 |
-
value:
|
1206 |
- type: mrr_at_1
|
1207 |
-
value:
|
1208 |
- type: mrr_at_10
|
1209 |
-
value:
|
1210 |
- type: mrr_at_100
|
1211 |
-
value:
|
1212 |
- type: mrr_at_1000
|
1213 |
-
value:
|
1214 |
- type: mrr_at_3
|
1215 |
-
value:
|
1216 |
- type: mrr_at_5
|
1217 |
-
value:
|
1218 |
- type: ndcg_at_1
|
1219 |
-
value:
|
1220 |
- type: ndcg_at_10
|
1221 |
-
value:
|
1222 |
- type: ndcg_at_100
|
1223 |
-
value:
|
1224 |
- type: ndcg_at_1000
|
1225 |
-
value:
|
1226 |
- type: ndcg_at_3
|
1227 |
-
value:
|
1228 |
- type: ndcg_at_5
|
1229 |
-
value:
|
1230 |
- type: precision_at_1
|
1231 |
-
value:
|
1232 |
- type: precision_at_10
|
1233 |
-
value:
|
1234 |
- type: precision_at_100
|
1235 |
-
value: 7.
|
1236 |
- type: precision_at_1000
|
1237 |
-
value: 1.
|
1238 |
- type: precision_at_3
|
1239 |
-
value:
|
1240 |
- type: precision_at_5
|
1241 |
-
value:
|
1242 |
- type: recall_at_1
|
1243 |
-
value: 7.
|
1244 |
- type: recall_at_10
|
1245 |
-
value: 19.
|
1246 |
- type: recall_at_100
|
1247 |
-
value: 40.
|
1248 |
- type: recall_at_1000
|
1249 |
-
value:
|
1250 |
- type: recall_at_3
|
1251 |
-
value: 12.
|
1252 |
- type: recall_at_5
|
1253 |
-
value: 15.
|
1254 |
- task:
|
1255 |
type: Classification
|
1256 |
dataset:
|
@@ -1261,9 +1261,9 @@ model-index:
|
|
1261 |
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1262 |
metrics:
|
1263 |
- type: accuracy
|
1264 |
-
value:
|
1265 |
- type: f1
|
1266 |
-
value:
|
1267 |
- task:
|
1268 |
type: Retrieval
|
1269 |
dataset:
|
@@ -1274,65 +1274,65 @@ model-index:
|
|
1274 |
revision: None
|
1275 |
metrics:
|
1276 |
- type: map_at_1
|
1277 |
-
value:
|
1278 |
- type: map_at_10
|
1279 |
-
value:
|
1280 |
- type: map_at_100
|
1281 |
-
value:
|
1282 |
- type: map_at_1000
|
1283 |
-
value:
|
1284 |
- type: map_at_3
|
1285 |
-
value:
|
1286 |
- type: map_at_5
|
1287 |
-
value:
|
1288 |
- type: mrr_at_1
|
1289 |
-
value:
|
1290 |
- type: mrr_at_10
|
1291 |
-
value:
|
1292 |
- type: mrr_at_100
|
1293 |
-
value:
|
1294 |
- type: mrr_at_1000
|
1295 |
-
value:
|
1296 |
- type: mrr_at_3
|
1297 |
-
value:
|
1298 |
- type: mrr_at_5
|
1299 |
-
value:
|
1300 |
- type: ndcg_at_1
|
1301 |
-
value:
|
1302 |
- type: ndcg_at_10
|
1303 |
-
value:
|
1304 |
- type: ndcg_at_100
|
1305 |
-
value:
|
1306 |
- type: ndcg_at_1000
|
1307 |
-
value:
|
1308 |
- type: ndcg_at_3
|
1309 |
-
value:
|
1310 |
- type: ndcg_at_5
|
1311 |
-
value:
|
1312 |
- type: precision_at_1
|
1313 |
-
value:
|
1314 |
- type: precision_at_10
|
1315 |
-
value: 9.
|
1316 |
- type: precision_at_100
|
1317 |
-
value: 1.
|
1318 |
- type: precision_at_1000
|
1319 |
value: 0.107
|
1320 |
- type: precision_at_3
|
1321 |
-
value:
|
1322 |
- type: precision_at_5
|
1323 |
-
value:
|
1324 |
- type: recall_at_1
|
1325 |
-
value:
|
1326 |
- type: recall_at_10
|
1327 |
-
value:
|
1328 |
- type: recall_at_100
|
1329 |
-
value:
|
1330 |
- type: recall_at_1000
|
1331 |
-
value: 95.
|
1332 |
- type: recall_at_3
|
1333 |
-
value:
|
1334 |
- type: recall_at_5
|
1335 |
-
value:
|
1336 |
- task:
|
1337 |
type: Retrieval
|
1338 |
dataset:
|
@@ -1343,65 +1343,65 @@ model-index:
|
|
1343 |
revision: None
|
1344 |
metrics:
|
1345 |
- type: map_at_1
|
1346 |
-
value: 16.
|
1347 |
- type: map_at_10
|
1348 |
-
value:
|
1349 |
- type: map_at_100
|
1350 |
-
value:
|
1351 |
- type: map_at_1000
|
1352 |
-
value:
|
1353 |
- type: map_at_3
|
1354 |
-
value: 23.
|
1355 |
- type: map_at_5
|
1356 |
-
value:
|
1357 |
- type: mrr_at_1
|
1358 |
-
value: 33.
|
1359 |
- type: mrr_at_10
|
1360 |
-
value:
|
1361 |
- type: mrr_at_100
|
1362 |
-
value:
|
1363 |
- type: mrr_at_1000
|
1364 |
-
value:
|
1365 |
- type: mrr_at_3
|
1366 |
-
value:
|
1367 |
- type: mrr_at_5
|
1368 |
-
value:
|
1369 |
- type: ndcg_at_1
|
1370 |
-
value: 33.
|
1371 |
- type: ndcg_at_10
|
1372 |
-
value:
|
1373 |
- type: ndcg_at_100
|
1374 |
-
value:
|
1375 |
- type: ndcg_at_1000
|
1376 |
-
value:
|
1377 |
- type: ndcg_at_3
|
1378 |
-
value:
|
1379 |
- type: ndcg_at_5
|
1380 |
-
value:
|
1381 |
- type: precision_at_1
|
1382 |
-
value: 33.
|
1383 |
- type: precision_at_10
|
1384 |
-
value:
|
1385 |
- type: precision_at_100
|
1386 |
-
value: 1.
|
1387 |
- type: precision_at_1000
|
1388 |
-
value: 0.
|
1389 |
- type: precision_at_3
|
1390 |
-
value:
|
1391 |
- type: precision_at_5
|
1392 |
-
value:
|
1393 |
- type: recall_at_1
|
1394 |
-
value: 16.
|
1395 |
- type: recall_at_10
|
1396 |
-
value:
|
1397 |
- type: recall_at_100
|
1398 |
-
value:
|
1399 |
- type: recall_at_1000
|
1400 |
-
value:
|
1401 |
- type: recall_at_3
|
1402 |
-
value:
|
1403 |
- type: recall_at_5
|
1404 |
-
value:
|
1405 |
- task:
|
1406 |
type: Retrieval
|
1407 |
dataset:
|
@@ -1412,65 +1412,65 @@ model-index:
|
|
1412 |
revision: None
|
1413 |
metrics:
|
1414 |
- type: map_at_1
|
1415 |
-
value:
|
1416 |
- type: map_at_10
|
1417 |
-
value:
|
1418 |
- type: map_at_100
|
1419 |
-
value:
|
1420 |
- type: map_at_1000
|
1421 |
-
value:
|
1422 |
- type: map_at_3
|
1423 |
-
value:
|
1424 |
- type: map_at_5
|
1425 |
-
value:
|
1426 |
- type: mrr_at_1
|
1427 |
-
value:
|
1428 |
- type: mrr_at_10
|
1429 |
-
value:
|
1430 |
- type: mrr_at_100
|
1431 |
-
value:
|
1432 |
- type: mrr_at_1000
|
1433 |
-
value:
|
1434 |
- type: mrr_at_3
|
1435 |
-
value:
|
1436 |
- type: mrr_at_5
|
1437 |
-
value:
|
1438 |
- type: ndcg_at_1
|
1439 |
-
value:
|
1440 |
- type: ndcg_at_10
|
1441 |
-
value:
|
1442 |
- type: ndcg_at_100
|
1443 |
-
value:
|
1444 |
- type: ndcg_at_1000
|
1445 |
-
value:
|
1446 |
- type: ndcg_at_3
|
1447 |
-
value:
|
1448 |
- type: ndcg_at_5
|
1449 |
-
value:
|
1450 |
- type: precision_at_1
|
1451 |
-
value:
|
1452 |
- type: precision_at_10
|
1453 |
-
value: 10.
|
1454 |
- type: precision_at_100
|
1455 |
-
value: 1.
|
1456 |
- type: precision_at_1000
|
1457 |
-
value: 0.
|
1458 |
- type: precision_at_3
|
1459 |
-
value:
|
1460 |
- type: precision_at_5
|
1461 |
-
value:
|
1462 |
- type: recall_at_1
|
1463 |
-
value:
|
1464 |
- type: recall_at_10
|
1465 |
-
value:
|
1466 |
- type: recall_at_100
|
1467 |
-
value: 65.
|
1468 |
- type: recall_at_1000
|
1469 |
-
value:
|
1470 |
- type: recall_at_3
|
1471 |
-
value:
|
1472 |
- type: recall_at_5
|
1473 |
-
value:
|
1474 |
- task:
|
1475 |
type: Classification
|
1476 |
dataset:
|
@@ -1481,11 +1481,11 @@ model-index:
|
|
1481 |
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1482 |
metrics:
|
1483 |
- type: accuracy
|
1484 |
-
value:
|
1485 |
- type: ap
|
1486 |
-
value:
|
1487 |
- type: f1
|
1488 |
-
value:
|
1489 |
- task:
|
1490 |
type: Retrieval
|
1491 |
dataset:
|
@@ -1496,65 +1496,65 @@ model-index:
|
|
1496 |
revision: None
|
1497 |
metrics:
|
1498 |
- type: map_at_1
|
1499 |
-
value:
|
1500 |
- type: map_at_10
|
1501 |
-
value:
|
1502 |
- type: map_at_100
|
1503 |
-
value:
|
1504 |
- type: map_at_1000
|
1505 |
-
value:
|
1506 |
- type: map_at_3
|
1507 |
-
value:
|
1508 |
- type: map_at_5
|
1509 |
-
value:
|
1510 |
- type: mrr_at_1
|
1511 |
-
value:
|
1512 |
- type: mrr_at_10
|
1513 |
-
value:
|
1514 |
- type: mrr_at_100
|
1515 |
-
value:
|
1516 |
- type: mrr_at_1000
|
1517 |
-
value:
|
1518 |
- type: mrr_at_3
|
1519 |
-
value:
|
1520 |
- type: mrr_at_5
|
1521 |
-
value:
|
1522 |
- type: ndcg_at_1
|
1523 |
-
value:
|
1524 |
- type: ndcg_at_10
|
1525 |
-
value:
|
1526 |
- type: ndcg_at_100
|
1527 |
-
value:
|
1528 |
- type: ndcg_at_1000
|
1529 |
-
value:
|
1530 |
- type: ndcg_at_3
|
1531 |
-
value:
|
1532 |
- type: ndcg_at_5
|
1533 |
-
value:
|
1534 |
- type: precision_at_1
|
1535 |
-
value:
|
1536 |
- type: precision_at_10
|
1537 |
-
value:
|
1538 |
- type: precision_at_100
|
1539 |
-
value: 0.
|
1540 |
- type: precision_at_1000
|
1541 |
value: 0.10300000000000001
|
1542 |
- type: precision_at_3
|
1543 |
-
value:
|
1544 |
- type: precision_at_5
|
1545 |
-
value:
|
1546 |
- type: recall_at_1
|
1547 |
-
value:
|
1548 |
- type: recall_at_10
|
1549 |
-
value:
|
1550 |
- type: recall_at_100
|
1551 |
-
value:
|
1552 |
- type: recall_at_1000
|
1553 |
-
value:
|
1554 |
- type: recall_at_3
|
1555 |
-
value:
|
1556 |
- type: recall_at_5
|
1557 |
-
value:
|
1558 |
- task:
|
1559 |
type: Classification
|
1560 |
dataset:
|
@@ -1565,9 +1565,9 @@ model-index:
|
|
1565 |
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1566 |
metrics:
|
1567 |
- type: accuracy
|
1568 |
-
value: 91.
|
1569 |
- type: f1
|
1570 |
-
value: 91.
|
1571 |
- task:
|
1572 |
type: Classification
|
1573 |
dataset:
|
@@ -1578,9 +1578,9 @@ model-index:
|
|
1578 |
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1579 |
metrics:
|
1580 |
- type: accuracy
|
1581 |
-
value:
|
1582 |
- type: f1
|
1583 |
-
value:
|
1584 |
- task:
|
1585 |
type: Classification
|
1586 |
dataset:
|
@@ -1591,9 +1591,9 @@ model-index:
|
|
1591 |
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1592 |
metrics:
|
1593 |
- type: accuracy
|
1594 |
-
value: 71.
|
1595 |
- type: f1
|
1596 |
-
value: 68.
|
1597 |
- task:
|
1598 |
type: Classification
|
1599 |
dataset:
|
@@ -1604,9 +1604,9 @@ model-index:
|
|
1604 |
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1605 |
metrics:
|
1606 |
- type: accuracy
|
1607 |
-
value:
|
1608 |
- type: f1
|
1609 |
-
value: 76.
|
1610 |
- task:
|
1611 |
type: Clustering
|
1612 |
dataset:
|
@@ -1617,7 +1617,7 @@ model-index:
|
|
1617 |
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1618 |
metrics:
|
1619 |
- type: v_measure
|
1620 |
-
value:
|
1621 |
- task:
|
1622 |
type: Clustering
|
1623 |
dataset:
|
@@ -1628,7 +1628,7 @@ model-index:
|
|
1628 |
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1629 |
metrics:
|
1630 |
- type: v_measure
|
1631 |
-
value: 25.
|
1632 |
- task:
|
1633 |
type: Reranking
|
1634 |
dataset:
|
@@ -1639,9 +1639,9 @@ model-index:
|
|
1639 |
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1640 |
metrics:
|
1641 |
- type: map
|
1642 |
-
value: 31.
|
1643 |
- type: mrr
|
1644 |
-
value:
|
1645 |
- task:
|
1646 |
type: Retrieval
|
1647 |
dataset:
|
@@ -1652,65 +1652,65 @@ model-index:
|
|
1652 |
revision: None
|
1653 |
metrics:
|
1654 |
- type: map_at_1
|
1655 |
-
value: 4.
|
1656 |
- type: map_at_10
|
1657 |
-
value: 10.
|
1658 |
- type: map_at_100
|
1659 |
-
value:
|
1660 |
- type: map_at_1000
|
1661 |
-
value: 14.
|
1662 |
- type: map_at_3
|
1663 |
-
value: 7.
|
1664 |
- type: map_at_5
|
1665 |
-
value:
|
1666 |
- type: mrr_at_1
|
1667 |
-
value:
|
1668 |
- type: mrr_at_10
|
1669 |
-
value:
|
1670 |
- type: mrr_at_100
|
1671 |
-
value:
|
1672 |
- type: mrr_at_1000
|
1673 |
-
value:
|
1674 |
- type: mrr_at_3
|
1675 |
-
value:
|
1676 |
- type: mrr_at_5
|
1677 |
-
value:
|
1678 |
- type: ndcg_at_1
|
1679 |
-
value:
|
1680 |
- type: ndcg_at_10
|
1681 |
-
value:
|
1682 |
- type: ndcg_at_100
|
1683 |
-
value: 27.
|
1684 |
- type: ndcg_at_1000
|
1685 |
-
value: 36.
|
1686 |
- type: ndcg_at_3
|
1687 |
-
value:
|
1688 |
- type: ndcg_at_5
|
1689 |
-
value:
|
1690 |
- type: precision_at_1
|
1691 |
-
value:
|
1692 |
- type: precision_at_10
|
1693 |
-
value: 22.
|
1694 |
- type: precision_at_100
|
1695 |
-
value: 7.
|
1696 |
- type: precision_at_1000
|
1697 |
-
value: 1.
|
1698 |
- type: precision_at_3
|
1699 |
-
value:
|
1700 |
- type: precision_at_5
|
1701 |
-
value:
|
1702 |
- type: recall_at_1
|
1703 |
-
value: 4.
|
1704 |
- type: recall_at_10
|
1705 |
-
value: 14.
|
1706 |
- type: recall_at_100
|
1707 |
-
value: 28.
|
1708 |
- type: recall_at_1000
|
1709 |
-
value:
|
1710 |
- type: recall_at_3
|
1711 |
-
value: 8.
|
1712 |
- type: recall_at_5
|
1713 |
-
value: 11.
|
1714 |
- task:
|
1715 |
type: Retrieval
|
1716 |
dataset:
|
@@ -1721,65 +1721,65 @@ model-index:
|
|
1721 |
revision: None
|
1722 |
metrics:
|
1723 |
- type: map_at_1
|
1724 |
-
value:
|
1725 |
- type: map_at_10
|
1726 |
-
value:
|
1727 |
- type: map_at_100
|
1728 |
-
value:
|
1729 |
- type: map_at_1000
|
1730 |
-
value:
|
1731 |
- type: map_at_3
|
1732 |
-
value:
|
1733 |
- type: map_at_5
|
1734 |
-
value:
|
1735 |
- type: mrr_at_1
|
1736 |
-
value:
|
1737 |
- type: mrr_at_10
|
1738 |
-
value:
|
1739 |
- type: mrr_at_100
|
1740 |
-
value:
|
1741 |
- type: mrr_at_1000
|
1742 |
-
value:
|
1743 |
- type: mrr_at_3
|
1744 |
-
value:
|
1745 |
- type: mrr_at_5
|
1746 |
-
value:
|
1747 |
- type: ndcg_at_1
|
1748 |
-
value:
|
1749 |
- type: ndcg_at_10
|
1750 |
-
value:
|
1751 |
- type: ndcg_at_100
|
1752 |
-
value:
|
1753 |
- type: ndcg_at_1000
|
1754 |
-
value:
|
1755 |
- type: ndcg_at_3
|
1756 |
-
value:
|
1757 |
- type: ndcg_at_5
|
1758 |
-
value:
|
1759 |
- type: precision_at_1
|
1760 |
-
value:
|
1761 |
- type: precision_at_10
|
1762 |
-
value:
|
1763 |
- type: precision_at_100
|
1764 |
-
value: 1.
|
1765 |
- type: precision_at_1000
|
1766 |
value: 0.117
|
1767 |
- type: precision_at_3
|
1768 |
-
value:
|
1769 |
- type: precision_at_5
|
1770 |
-
value:
|
1771 |
- type: recall_at_1
|
1772 |
-
value:
|
1773 |
- type: recall_at_10
|
1774 |
-
value:
|
1775 |
- type: recall_at_100
|
1776 |
-
value:
|
1777 |
- type: recall_at_1000
|
1778 |
-
value: 96.
|
1779 |
- type: recall_at_3
|
1780 |
-
value:
|
1781 |
- type: recall_at_5
|
1782 |
-
value:
|
1783 |
- task:
|
1784 |
type: Retrieval
|
1785 |
dataset:
|
@@ -1790,65 +1790,65 @@ model-index:
|
|
1790 |
revision: None
|
1791 |
metrics:
|
1792 |
- type: map_at_1
|
1793 |
-
value: 69.
|
1794 |
- type: map_at_10
|
1795 |
-
value: 83.
|
1796 |
- type: map_at_100
|
1797 |
-
value:
|
1798 |
- type: map_at_1000
|
1799 |
-
value:
|
1800 |
- type: map_at_3
|
1801 |
-
value: 80.
|
1802 |
- type: map_at_5
|
1803 |
-
value: 82.
|
1804 |
- type: mrr_at_1
|
1805 |
-
value:
|
1806 |
- type: mrr_at_10
|
1807 |
-
value: 86.
|
1808 |
- type: mrr_at_100
|
1809 |
-
value: 86.
|
1810 |
- type: mrr_at_1000
|
1811 |
-
value: 86.
|
1812 |
- type: mrr_at_3
|
1813 |
-
value: 85.
|
1814 |
- type: mrr_at_5
|
1815 |
-
value:
|
1816 |
- type: ndcg_at_1
|
1817 |
-
value:
|
1818 |
- type: ndcg_at_10
|
1819 |
-
value: 87.
|
1820 |
- type: ndcg_at_100
|
1821 |
-
value: 88.
|
1822 |
- type: ndcg_at_1000
|
1823 |
-
value:
|
1824 |
- type: ndcg_at_3
|
1825 |
-
value: 84.
|
1826 |
- type: ndcg_at_5
|
1827 |
-
value:
|
1828 |
- type: precision_at_1
|
1829 |
-
value:
|
1830 |
- type: precision_at_10
|
1831 |
-
value: 13.
|
1832 |
- type: precision_at_100
|
1833 |
-
value: 1.
|
1834 |
- type: precision_at_1000
|
1835 |
value: 0.157
|
1836 |
- type: precision_at_3
|
1837 |
-
value: 36.
|
1838 |
- type: precision_at_5
|
1839 |
-
value: 24.
|
1840 |
- type: recall_at_1
|
1841 |
-
value: 69.
|
1842 |
- type: recall_at_10
|
1843 |
-
value: 94.
|
1844 |
- type: recall_at_100
|
1845 |
-
value: 99.
|
1846 |
- type: recall_at_1000
|
1847 |
-
value: 99.
|
1848 |
- type: recall_at_3
|
1849 |
-
value: 86.
|
1850 |
- type: recall_at_5
|
1851 |
-
value:
|
1852 |
- task:
|
1853 |
type: Clustering
|
1854 |
dataset:
|
@@ -1859,7 +1859,7 @@ model-index:
|
|
1859 |
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1860 |
metrics:
|
1861 |
- type: v_measure
|
1862 |
-
value:
|
1863 |
- task:
|
1864 |
type: Clustering
|
1865 |
dataset:
|
@@ -1870,7 +1870,7 @@ model-index:
|
|
1870 |
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1871 |
metrics:
|
1872 |
- type: v_measure
|
1873 |
-
value:
|
1874 |
- task:
|
1875 |
type: Retrieval
|
1876 |
dataset:
|
@@ -1881,65 +1881,65 @@ model-index:
|
|
1881 |
revision: None
|
1882 |
metrics:
|
1883 |
- type: map_at_1
|
1884 |
-
value: 4.
|
1885 |
- type: map_at_10
|
1886 |
-
value: 10.
|
1887 |
- type: map_at_100
|
1888 |
-
value: 12.
|
1889 |
- type: map_at_1000
|
1890 |
-
value: 12.
|
1891 |
- type: map_at_3
|
1892 |
-
value: 7.
|
1893 |
- type: map_at_5
|
1894 |
-
value:
|
1895 |
- type: mrr_at_1
|
1896 |
-
value:
|
1897 |
- type: mrr_at_10
|
1898 |
-
value: 30.
|
1899 |
- type: mrr_at_100
|
1900 |
-
value: 31.
|
1901 |
- type: mrr_at_1000
|
1902 |
-
value: 31.
|
1903 |
- type: mrr_at_3
|
1904 |
-
value:
|
1905 |
- type: mrr_at_5
|
1906 |
-
value:
|
1907 |
- type: ndcg_at_1
|
1908 |
-
value:
|
1909 |
- type: ndcg_at_10
|
1910 |
-
value: 17.
|
1911 |
- type: ndcg_at_100
|
1912 |
-
value: 25.
|
1913 |
- type: ndcg_at_1000
|
1914 |
-
value: 30.
|
1915 |
- type: ndcg_at_3
|
1916 |
-
value: 16.
|
1917 |
- type: ndcg_at_5
|
1918 |
-
value: 14.
|
1919 |
- type: precision_at_1
|
1920 |
-
value:
|
1921 |
- type: precision_at_10
|
1922 |
-
value: 9.
|
1923 |
- type: precision_at_100
|
1924 |
-
value:
|
1925 |
- type: precision_at_1000
|
1926 |
-
value: 0.
|
1927 |
- type: precision_at_3
|
1928 |
-
value: 15.
|
1929 |
- type: precision_at_5
|
1930 |
-
value: 12.
|
1931 |
- type: recall_at_1
|
1932 |
-
value: 4.
|
1933 |
- type: recall_at_10
|
1934 |
-
value: 18.
|
1935 |
- type: recall_at_100
|
1936 |
-
value: 40.
|
1937 |
- type: recall_at_1000
|
1938 |
-
value:
|
1939 |
- type: recall_at_3
|
1940 |
-
value: 9.
|
1941 |
- type: recall_at_5
|
1942 |
-
value:
|
1943 |
- task:
|
1944 |
type: STS
|
1945 |
dataset:
|
@@ -1950,17 +1950,17 @@ model-index:
|
|
1950 |
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1951 |
metrics:
|
1952 |
- type: cos_sim_pearson
|
1953 |
-
value:
|
1954 |
- type: cos_sim_spearman
|
1955 |
-
value:
|
1956 |
- type: euclidean_pearson
|
1957 |
-
value:
|
1958 |
- type: euclidean_spearman
|
1959 |
-
value:
|
1960 |
- type: manhattan_pearson
|
1961 |
-
value:
|
1962 |
- type: manhattan_spearman
|
1963 |
-
value:
|
1964 |
- task:
|
1965 |
type: STS
|
1966 |
dataset:
|
@@ -1971,17 +1971,17 @@ model-index:
|
|
1971 |
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1972 |
metrics:
|
1973 |
- type: cos_sim_pearson
|
1974 |
-
value:
|
1975 |
- type: cos_sim_spearman
|
1976 |
-
value:
|
1977 |
- type: euclidean_pearson
|
1978 |
-
value:
|
1979 |
- type: euclidean_spearman
|
1980 |
-
value:
|
1981 |
- type: manhattan_pearson
|
1982 |
-
value:
|
1983 |
- type: manhattan_spearman
|
1984 |
-
value:
|
1985 |
- task:
|
1986 |
type: STS
|
1987 |
dataset:
|
@@ -1992,17 +1992,17 @@ model-index:
|
|
1992 |
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1993 |
metrics:
|
1994 |
- type: cos_sim_pearson
|
1995 |
-
value:
|
1996 |
- type: cos_sim_spearman
|
1997 |
-
value:
|
1998 |
- type: euclidean_pearson
|
1999 |
-
value:
|
2000 |
- type: euclidean_spearman
|
2001 |
-
value:
|
2002 |
- type: manhattan_pearson
|
2003 |
-
value:
|
2004 |
- type: manhattan_spearman
|
2005 |
-
value:
|
2006 |
- task:
|
2007 |
type: STS
|
2008 |
dataset:
|
@@ -2013,17 +2013,17 @@ model-index:
|
|
2013 |
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2014 |
metrics:
|
2015 |
- type: cos_sim_pearson
|
2016 |
-
value:
|
2017 |
- type: cos_sim_spearman
|
2018 |
-
value:
|
2019 |
- type: euclidean_pearson
|
2020 |
-
value:
|
2021 |
- type: euclidean_spearman
|
2022 |
-
value:
|
2023 |
- type: manhattan_pearson
|
2024 |
-
value:
|
2025 |
- type: manhattan_spearman
|
2026 |
-
value:
|
2027 |
- task:
|
2028 |
type: STS
|
2029 |
dataset:
|
@@ -2034,17 +2034,17 @@ model-index:
|
|
2034 |
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2035 |
metrics:
|
2036 |
- type: cos_sim_pearson
|
2037 |
-
value:
|
2038 |
- type: cos_sim_spearman
|
2039 |
-
value: 85.
|
2040 |
- type: euclidean_pearson
|
2041 |
-
value:
|
2042 |
- type: euclidean_spearman
|
2043 |
-
value:
|
2044 |
- type: manhattan_pearson
|
2045 |
-
value:
|
2046 |
- type: manhattan_spearman
|
2047 |
-
value:
|
2048 |
- task:
|
2049 |
type: STS
|
2050 |
dataset:
|
@@ -2055,17 +2055,17 @@ model-index:
|
|
2055 |
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2056 |
metrics:
|
2057 |
- type: cos_sim_pearson
|
2058 |
-
value:
|
2059 |
- type: cos_sim_spearman
|
2060 |
-
value:
|
2061 |
- type: euclidean_pearson
|
2062 |
-
value:
|
2063 |
- type: euclidean_spearman
|
2064 |
-
value:
|
2065 |
- type: manhattan_pearson
|
2066 |
-
value:
|
2067 |
- type: manhattan_spearman
|
2068 |
-
value:
|
2069 |
- task:
|
2070 |
type: STS
|
2071 |
dataset:
|
@@ -2076,17 +2076,17 @@ model-index:
|
|
2076 |
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2077 |
metrics:
|
2078 |
- type: cos_sim_pearson
|
2079 |
-
value:
|
2080 |
- type: cos_sim_spearman
|
2081 |
-
value:
|
2082 |
- type: euclidean_pearson
|
2083 |
-
value:
|
2084 |
- type: euclidean_spearman
|
2085 |
-
value:
|
2086 |
- type: manhattan_pearson
|
2087 |
-
value:
|
2088 |
- type: manhattan_spearman
|
2089 |
-
value:
|
2090 |
- task:
|
2091 |
type: STS
|
2092 |
dataset:
|
@@ -2097,17 +2097,17 @@ model-index:
|
|
2097 |
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2098 |
metrics:
|
2099 |
- type: cos_sim_pearson
|
2100 |
-
value:
|
2101 |
- type: cos_sim_spearman
|
2102 |
-
value: 66.
|
2103 |
- type: euclidean_pearson
|
2104 |
-
value:
|
2105 |
- type: euclidean_spearman
|
2106 |
-
value: 60.
|
2107 |
- type: manhattan_pearson
|
2108 |
-
value:
|
2109 |
- type: manhattan_spearman
|
2110 |
-
value:
|
2111 |
- task:
|
2112 |
type: STS
|
2113 |
dataset:
|
@@ -2118,17 +2118,17 @@ model-index:
|
|
2118 |
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2119 |
metrics:
|
2120 |
- type: cos_sim_pearson
|
2121 |
-
value:
|
2122 |
- type: cos_sim_spearman
|
2123 |
-
value:
|
2124 |
- type: euclidean_pearson
|
2125 |
-
value: 72.
|
2126 |
- type: euclidean_spearman
|
2127 |
-
value:
|
2128 |
- type: manhattan_pearson
|
2129 |
-
value: 72.
|
2130 |
- type: manhattan_spearman
|
2131 |
-
value:
|
2132 |
- task:
|
2133 |
type: Reranking
|
2134 |
dataset:
|
@@ -2139,9 +2139,9 @@ model-index:
|
|
2139 |
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2140 |
metrics:
|
2141 |
- type: map
|
2142 |
-
value: 79.
|
2143 |
- type: mrr
|
2144 |
-
value: 93.
|
2145 |
- task:
|
2146 |
type: Retrieval
|
2147 |
dataset:
|
@@ -2152,65 +2152,65 @@ model-index:
|
|
2152 |
revision: None
|
2153 |
metrics:
|
2154 |
- type: map_at_1
|
2155 |
-
value:
|
2156 |
- type: map_at_10
|
2157 |
-
value:
|
2158 |
- type: map_at_100
|
2159 |
-
value:
|
2160 |
- type: map_at_1000
|
2161 |
-
value:
|
2162 |
- type: map_at_3
|
2163 |
-
value:
|
2164 |
- type: map_at_5
|
2165 |
-
value:
|
2166 |
- type: mrr_at_1
|
2167 |
-
value:
|
2168 |
- type: mrr_at_10
|
2169 |
-
value:
|
2170 |
- type: mrr_at_100
|
2171 |
-
value:
|
2172 |
- type: mrr_at_1000
|
2173 |
-
value:
|
2174 |
- type: mrr_at_3
|
2175 |
-
value:
|
2176 |
- type: mrr_at_5
|
2177 |
-
value:
|
2178 |
- type: ndcg_at_1
|
2179 |
-
value:
|
2180 |
- type: ndcg_at_10
|
2181 |
-
value:
|
2182 |
- type: ndcg_at_100
|
2183 |
-
value:
|
2184 |
- type: ndcg_at_1000
|
2185 |
-
value: 63.
|
2186 |
- type: ndcg_at_3
|
2187 |
-
value:
|
2188 |
- type: ndcg_at_5
|
2189 |
-
value:
|
2190 |
- type: precision_at_1
|
2191 |
-
value:
|
2192 |
- type: precision_at_10
|
2193 |
-
value: 8.
|
2194 |
- type: precision_at_100
|
2195 |
-
value: 0.
|
2196 |
- type: precision_at_1000
|
2197 |
value: 0.11
|
2198 |
- type: precision_at_3
|
2199 |
-
value: 21.
|
2200 |
- type: precision_at_5
|
2201 |
-
value: 14.
|
2202 |
- type: recall_at_1
|
2203 |
-
value:
|
2204 |
- type: recall_at_10
|
2205 |
-
value: 71.
|
2206 |
- type: recall_at_100
|
2207 |
-
value:
|
2208 |
- type: recall_at_1000
|
2209 |
value: 97.5
|
2210 |
- type: recall_at_3
|
2211 |
-
value:
|
2212 |
- type: recall_at_5
|
2213 |
-
value:
|
2214 |
- task:
|
2215 |
type: PairClassification
|
2216 |
dataset:
|
@@ -2221,51 +2221,51 @@ model-index:
|
|
2221 |
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2222 |
metrics:
|
2223 |
- type: cos_sim_accuracy
|
2224 |
-
value: 99.
|
2225 |
- type: cos_sim_ap
|
2226 |
-
value:
|
2227 |
- type: cos_sim_f1
|
2228 |
-
value:
|
2229 |
- type: cos_sim_precision
|
2230 |
-
value:
|
2231 |
- type: cos_sim_recall
|
2232 |
-
value:
|
2233 |
- type: dot_accuracy
|
2234 |
-
value: 99.
|
2235 |
- type: dot_ap
|
2236 |
-
value:
|
2237 |
- type: dot_f1
|
2238 |
-
value:
|
2239 |
- type: dot_precision
|
2240 |
-
value:
|
2241 |
- type: dot_recall
|
2242 |
-
value:
|
2243 |
- type: euclidean_accuracy
|
2244 |
-
value: 99.
|
2245 |
- type: euclidean_ap
|
2246 |
-
value:
|
2247 |
- type: euclidean_f1
|
2248 |
-
value:
|
2249 |
- type: euclidean_precision
|
2250 |
-
value:
|
2251 |
- type: euclidean_recall
|
2252 |
-
value:
|
2253 |
- type: manhattan_accuracy
|
2254 |
-
value: 99.
|
2255 |
- type: manhattan_ap
|
2256 |
-
value:
|
2257 |
- type: manhattan_f1
|
2258 |
-
value:
|
2259 |
- type: manhattan_precision
|
2260 |
-
value:
|
2261 |
- type: manhattan_recall
|
2262 |
-
value:
|
2263 |
- type: max_accuracy
|
2264 |
-
value: 99.
|
2265 |
- type: max_ap
|
2266 |
-
value:
|
2267 |
- type: max_f1
|
2268 |
-
value:
|
2269 |
- task:
|
2270 |
type: Clustering
|
2271 |
dataset:
|
@@ -2276,7 +2276,7 @@ model-index:
|
|
2276 |
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2277 |
metrics:
|
2278 |
- type: v_measure
|
2279 |
-
value:
|
2280 |
- task:
|
2281 |
type: Clustering
|
2282 |
dataset:
|
@@ -2287,7 +2287,7 @@ model-index:
|
|
2287 |
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2288 |
metrics:
|
2289 |
- type: v_measure
|
2290 |
-
value: 31.
|
2291 |
- task:
|
2292 |
type: Reranking
|
2293 |
dataset:
|
@@ -2298,9 +2298,9 @@ model-index:
|
|
2298 |
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2299 |
metrics:
|
2300 |
- type: map
|
2301 |
-
value: 50.
|
2302 |
- type: mrr
|
2303 |
-
value:
|
2304 |
- task:
|
2305 |
type: Summarization
|
2306 |
dataset:
|
@@ -2311,13 +2311,13 @@ model-index:
|
|
2311 |
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2312 |
metrics:
|
2313 |
- type: cos_sim_pearson
|
2314 |
-
value:
|
2315 |
- type: cos_sim_spearman
|
2316 |
-
value: 30.
|
2317 |
- type: dot_pearson
|
2318 |
-
value:
|
2319 |
- type: dot_spearman
|
2320 |
-
value:
|
2321 |
- task:
|
2322 |
type: Retrieval
|
2323 |
dataset:
|
@@ -2328,65 +2328,65 @@ model-index:
|
|
2328 |
revision: None
|
2329 |
metrics:
|
2330 |
- type: map_at_1
|
2331 |
-
value: 0.
|
2332 |
- type: map_at_10
|
2333 |
-
value: 1.
|
2334 |
- type: map_at_100
|
2335 |
-
value:
|
2336 |
- type: map_at_1000
|
2337 |
-
value:
|
2338 |
- type: map_at_3
|
2339 |
-
value: 0.
|
2340 |
- type: map_at_5
|
2341 |
-
value: 0.
|
2342 |
- type: mrr_at_1
|
2343 |
-
value:
|
2344 |
- type: mrr_at_10
|
2345 |
-
value:
|
2346 |
- type: mrr_at_100
|
2347 |
-
value:
|
2348 |
- type: mrr_at_1000
|
2349 |
-
value:
|
2350 |
- type: mrr_at_3
|
2351 |
-
value:
|
2352 |
- type: mrr_at_5
|
2353 |
-
value:
|
2354 |
- type: ndcg_at_1
|
2355 |
-
value:
|
2356 |
- type: ndcg_at_10
|
2357 |
-
value:
|
2358 |
- type: ndcg_at_100
|
2359 |
-
value:
|
2360 |
- type: ndcg_at_1000
|
2361 |
-
value:
|
2362 |
- type: ndcg_at_3
|
2363 |
-
value:
|
2364 |
- type: ndcg_at_5
|
2365 |
-
value:
|
2366 |
- type: precision_at_1
|
2367 |
-
value:
|
2368 |
- type: precision_at_10
|
2369 |
-
value:
|
2370 |
- type: precision_at_100
|
2371 |
-
value:
|
2372 |
- type: precision_at_1000
|
2373 |
-
value:
|
2374 |
- type: precision_at_3
|
2375 |
-
value:
|
2376 |
- type: precision_at_5
|
2377 |
-
value:
|
2378 |
- type: recall_at_1
|
2379 |
-
value: 0.
|
2380 |
- type: recall_at_10
|
2381 |
-
value: 1.
|
2382 |
- type: recall_at_100
|
2383 |
-
value:
|
2384 |
- type: recall_at_1000
|
2385 |
-
value:
|
2386 |
- type: recall_at_3
|
2387 |
-
value: 0.
|
2388 |
- type: recall_at_5
|
2389 |
-
value: 0.
|
2390 |
- task:
|
2391 |
type: Retrieval
|
2392 |
dataset:
|
@@ -2397,65 +2397,65 @@ model-index:
|
|
2397 |
revision: None
|
2398 |
metrics:
|
2399 |
- type: map_at_1
|
2400 |
-
value: 1.
|
2401 |
- type: map_at_10
|
2402 |
-
value: 7.
|
2403 |
- type: map_at_100
|
2404 |
-
value:
|
2405 |
- type: map_at_1000
|
2406 |
-
value:
|
2407 |
- type: map_at_3
|
2408 |
-
value: 3.
|
2409 |
- type: map_at_5
|
2410 |
-
value: 4.
|
2411 |
- type: mrr_at_1
|
2412 |
-
value:
|
2413 |
- type: mrr_at_10
|
2414 |
-
value:
|
2415 |
- type: mrr_at_100
|
2416 |
-
value:
|
2417 |
- type: mrr_at_1000
|
2418 |
-
value:
|
2419 |
- type: mrr_at_3
|
2420 |
-
value:
|
2421 |
- type: mrr_at_5
|
2422 |
-
value:
|
2423 |
- type: ndcg_at_1
|
2424 |
-
value:
|
2425 |
- type: ndcg_at_10
|
2426 |
-
value: 18.
|
2427 |
- type: ndcg_at_100
|
2428 |
-
value:
|
2429 |
- type: ndcg_at_1000
|
2430 |
-
value:
|
2431 |
- type: ndcg_at_3
|
2432 |
-
value: 18.
|
2433 |
- type: ndcg_at_5
|
2434 |
-
value:
|
2435 |
- type: precision_at_1
|
2436 |
-
value:
|
2437 |
- type: precision_at_10
|
2438 |
-
value: 17.
|
2439 |
- type: precision_at_100
|
2440 |
-
value: 6.
|
2441 |
- type: precision_at_1000
|
2442 |
-
value: 1.
|
2443 |
- type: precision_at_3
|
2444 |
value: 20.408
|
2445 |
- type: precision_at_5
|
2446 |
-
value:
|
2447 |
- type: recall_at_1
|
2448 |
-
value: 1.
|
2449 |
- type: recall_at_10
|
2450 |
-
value:
|
2451 |
- type: recall_at_100
|
2452 |
-
value:
|
2453 |
- type: recall_at_1000
|
2454 |
-
value:
|
2455 |
- type: recall_at_3
|
2456 |
-
value: 4.
|
2457 |
- type: recall_at_5
|
2458 |
-
value:
|
2459 |
- task:
|
2460 |
type: Classification
|
2461 |
dataset:
|
@@ -2466,11 +2466,11 @@ model-index:
|
|
2466 |
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2467 |
metrics:
|
2468 |
- type: accuracy
|
2469 |
-
value:
|
2470 |
- type: ap
|
2471 |
-
value: 11.
|
2472 |
- type: f1
|
2473 |
-
value:
|
2474 |
- task:
|
2475 |
type: Classification
|
2476 |
dataset:
|
@@ -2481,9 +2481,9 @@ model-index:
|
|
2481 |
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2482 |
metrics:
|
2483 |
- type: accuracy
|
2484 |
-
value: 56.
|
2485 |
- type: f1
|
2486 |
-
value: 56.
|
2487 |
- task:
|
2488 |
type: Clustering
|
2489 |
dataset:
|
@@ -2494,7 +2494,7 @@ model-index:
|
|
2494 |
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2495 |
metrics:
|
2496 |
- type: v_measure
|
2497 |
-
value:
|
2498 |
- task:
|
2499 |
type: PairClassification
|
2500 |
dataset:
|
@@ -2505,51 +2505,51 @@ model-index:
|
|
2505 |
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2506 |
metrics:
|
2507 |
- type: cos_sim_accuracy
|
2508 |
-
value: 84.
|
2509 |
- type: cos_sim_ap
|
2510 |
-
value: 68.
|
2511 |
- type: cos_sim_f1
|
2512 |
-
value: 64.
|
2513 |
- type: cos_sim_precision
|
2514 |
-
value: 61.
|
2515 |
- type: cos_sim_recall
|
2516 |
-
value: 67.
|
2517 |
- type: dot_accuracy
|
2518 |
-
value: 77.
|
2519 |
- type: dot_ap
|
2520 |
-
value: 37.
|
2521 |
- type: dot_f1
|
2522 |
-
value: 43.
|
2523 |
- type: dot_precision
|
2524 |
-
value:
|
2525 |
- type: dot_recall
|
2526 |
-
value:
|
2527 |
- type: euclidean_accuracy
|
2528 |
-
value: 82.
|
2529 |
- type: euclidean_ap
|
2530 |
-
value:
|
2531 |
- type: euclidean_f1
|
2532 |
-
value:
|
2533 |
- type: euclidean_precision
|
2534 |
-
value:
|
2535 |
- type: euclidean_recall
|
2536 |
-
value:
|
2537 |
- type: manhattan_accuracy
|
2538 |
-
value: 82.
|
2539 |
- type: manhattan_ap
|
2540 |
-
value:
|
2541 |
- type: manhattan_f1
|
2542 |
-
value:
|
2543 |
- type: manhattan_precision
|
2544 |
-
value:
|
2545 |
- type: manhattan_recall
|
2546 |
-
value:
|
2547 |
- type: max_accuracy
|
2548 |
-
value: 84.
|
2549 |
- type: max_ap
|
2550 |
-
value: 68.
|
2551 |
- type: max_f1
|
2552 |
-
value: 64.
|
2553 |
- task:
|
2554 |
type: PairClassification
|
2555 |
dataset:
|
@@ -2560,51 +2560,51 @@ model-index:
|
|
2560 |
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2561 |
metrics:
|
2562 |
- type: cos_sim_accuracy
|
2563 |
-
value: 88.
|
2564 |
- type: cos_sim_ap
|
2565 |
-
value:
|
2566 |
- type: cos_sim_f1
|
2567 |
-
value:
|
2568 |
- type: cos_sim_precision
|
2569 |
-
value:
|
2570 |
- type: cos_sim_recall
|
2571 |
-
value:
|
2572 |
- type: dot_accuracy
|
2573 |
-
value:
|
2574 |
- type: dot_ap
|
2575 |
-
value:
|
2576 |
- type: dot_f1
|
2577 |
-
value:
|
2578 |
- type: dot_precision
|
2579 |
-
value:
|
2580 |
- type: dot_recall
|
2581 |
-
value:
|
2582 |
- type: euclidean_accuracy
|
2583 |
-
value:
|
2584 |
- type: euclidean_ap
|
2585 |
-
value: 70.
|
2586 |
- type: euclidean_f1
|
2587 |
-
value: 62.
|
2588 |
- type: euclidean_precision
|
2589 |
-
value:
|
2590 |
- type: euclidean_recall
|
2591 |
-
value:
|
2592 |
- type: manhattan_accuracy
|
2593 |
-
value:
|
2594 |
- type: manhattan_ap
|
2595 |
-
value: 70.
|
2596 |
- type: manhattan_f1
|
2597 |
-
value: 62.
|
2598 |
- type: manhattan_precision
|
2599 |
-
value:
|
2600 |
- type: manhattan_recall
|
2601 |
-
value:
|
2602 |
- type: max_accuracy
|
2603 |
-
value: 88.
|
2604 |
- type: max_ap
|
2605 |
-
value:
|
2606 |
- type: max_f1
|
2607 |
-
value:
|
2608 |
---
|
2609 |
---
|
2610 |
|
@@ -2665,9 +2665,9 @@ We compared the model against `all-minilm-l6-v2`/`all-mpnet-base-v2` from sbert
|
|
2665 |
|all-minilm-l6-v2|0.724|0.806|0.756|0.854|0.79 |0.876|0.473 |0.876|0.645 |
|
2666 |
|all-mpnet-base-v2|0.726|0.835|**0.78** |0.857|0.8 |**0.906**|0.513 |0.875|0.656 |
|
2667 |
|ada-embedding-002|0.698|0.833|0.761|0.861|**0.86** |0.903|**0.685** |0.876|**0.726** |
|
2668 |
-
|jina-embedding-t-en-v1|0.
|
2669 |
-
|jina-embedding-s-en-v1
|
2670 |
-
|jina-embedding-b-en-v1
|
2671 |
|jina-embedding-l-en-v1|0.739|**0.844**|0.778|**0.863**|0.821|0.896|0.566 |**0.882**|0.608 |
|
2672 |
|
2673 |
## Usage
|
@@ -2719,11 +2719,11 @@ If you find Jina Embeddings useful in your research, please cite the following p
|
|
2719 |
|
2720 |
``` latex
|
2721 |
@misc{günther2023jina,
|
2722 |
-
title={Jina Embeddings: A Novel Set of High-Performance Sentence Embedding Models},
|
2723 |
author={Michael Günther and Louis Milliken and Jonathan Geuter and Georgios Mastrapas and Bo Wang and Han Xiao},
|
2724 |
year={2023},
|
2725 |
eprint={2307.11224},
|
2726 |
archivePrefix={arXiv},
|
2727 |
primaryClass={cs.CL}
|
2728 |
}
|
2729 |
-
```
|
|
|
23 |
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
24 |
metrics:
|
25 |
- type: accuracy
|
26 |
+
value: 66.73134328358208
|
27 |
- type: ap
|
28 |
+
value: 28.30575908745204
|
29 |
- type: f1
|
30 |
+
value: 60.02420130946191
|
31 |
- task:
|
32 |
type: Classification
|
33 |
dataset:
|
|
|
38 |
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
39 |
metrics:
|
40 |
- type: accuracy
|
41 |
+
value: 67.6068
|
42 |
- type: ap
|
43 |
+
value: 63.5899352938589
|
44 |
- type: f1
|
45 |
+
value: 65.64285334357656
|
46 |
- task:
|
47 |
type: Classification
|
48 |
dataset:
|
|
|
53 |
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
54 |
metrics:
|
55 |
- type: accuracy
|
56 |
+
value: 31.178
|
57 |
- type: f1
|
58 |
+
value: 29.68460843733487
|
59 |
- task:
|
60 |
type: Retrieval
|
61 |
dataset:
|
62 |
+
type: arguana
|
63 |
+
name: MTEB ArguAna
|
64 |
config: default
|
65 |
split: test
|
66 |
revision: None
|
67 |
metrics:
|
68 |
- type: map_at_1
|
69 |
+
value: 24.964
|
70 |
- type: map_at_10
|
71 |
+
value: 40.217999999999996
|
72 |
- type: map_at_100
|
73 |
+
value: 41.263
|
74 |
- type: map_at_1000
|
75 |
+
value: 41.277
|
76 |
- type: map_at_3
|
77 |
+
value: 35.183
|
78 |
- type: map_at_5
|
79 |
+
value: 38.045
|
80 |
- type: mrr_at_1
|
81 |
+
value: 25.107000000000003
|
82 |
- type: mrr_at_10
|
83 |
+
value: 40.272999999999996
|
84 |
- type: mrr_at_100
|
85 |
+
value: 41.318
|
86 |
- type: mrr_at_1000
|
87 |
+
value: 41.333
|
88 |
- type: mrr_at_3
|
89 |
+
value: 35.242000000000004
|
90 |
- type: mrr_at_5
|
91 |
+
value: 38.101
|
92 |
- type: ndcg_at_1
|
93 |
+
value: 24.964
|
94 |
- type: ndcg_at_10
|
95 |
+
value: 49.006
|
96 |
- type: ndcg_at_100
|
97 |
+
value: 53.446000000000005
|
98 |
- type: ndcg_at_1000
|
99 |
+
value: 53.813
|
100 |
- type: ndcg_at_3
|
101 |
+
value: 38.598
|
102 |
- type: ndcg_at_5
|
103 |
+
value: 43.74
|
104 |
- type: precision_at_1
|
105 |
+
value: 24.964
|
106 |
- type: precision_at_10
|
107 |
+
value: 7.724
|
108 |
- type: precision_at_100
|
109 |
+
value: 0.966
|
110 |
- type: precision_at_1000
|
111 |
+
value: 0.099
|
112 |
- type: precision_at_3
|
113 |
+
value: 16.169
|
114 |
- type: precision_at_5
|
115 |
+
value: 12.191
|
116 |
- type: recall_at_1
|
117 |
+
value: 24.964
|
118 |
- type: recall_at_10
|
119 |
+
value: 77.24
|
120 |
- type: recall_at_100
|
121 |
+
value: 96.586
|
122 |
- type: recall_at_1000
|
123 |
+
value: 99.431
|
124 |
- type: recall_at_3
|
125 |
+
value: 48.506
|
126 |
- type: recall_at_5
|
127 |
+
value: 60.953
|
128 |
+
- task:
|
129 |
+
type: Clustering
|
130 |
+
dataset:
|
131 |
+
type: mteb/arxiv-clustering-p2p
|
132 |
+
name: MTEB ArxivClusteringP2P
|
133 |
+
config: default
|
134 |
+
split: test
|
135 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
136 |
+
metrics:
|
137 |
+
- type: v_measure
|
138 |
+
value: 39.25203906042786
|
139 |
+
- task:
|
140 |
+
type: Clustering
|
141 |
+
dataset:
|
142 |
+
type: mteb/arxiv-clustering-s2s
|
143 |
+
name: MTEB ArxivClusteringS2S
|
144 |
+
config: default
|
145 |
+
split: test
|
146 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
147 |
+
metrics:
|
148 |
+
- type: v_measure
|
149 |
+
value: 29.07648348376354
|
150 |
+
- task:
|
151 |
+
type: Reranking
|
152 |
+
dataset:
|
153 |
+
type: mteb/askubuntudupquestions-reranking
|
154 |
+
name: MTEB AskUbuntuDupQuestions
|
155 |
+
config: default
|
156 |
+
split: test
|
157 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
158 |
+
metrics:
|
159 |
+
- type: map
|
160 |
+
value: 62.4029266143623
|
161 |
+
- type: mrr
|
162 |
+
value: 75.45750340764191
|
163 |
+
- task:
|
164 |
+
type: STS
|
165 |
+
dataset:
|
166 |
+
type: mteb/biosses-sts
|
167 |
+
name: MTEB BIOSSES
|
168 |
+
config: default
|
169 |
+
split: test
|
170 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
171 |
+
metrics:
|
172 |
+
- type: cos_sim_pearson
|
173 |
+
value: 85.92280995704714
|
174 |
+
- type: cos_sim_spearman
|
175 |
+
value: 83.58082010833608
|
176 |
+
- type: euclidean_pearson
|
177 |
+
value: 48.64744162695948
|
178 |
+
- type: euclidean_spearman
|
179 |
+
value: 48.817377397301556
|
180 |
+
- type: manhattan_pearson
|
181 |
+
value: 48.87684776623195
|
182 |
+
- type: manhattan_spearman
|
183 |
+
value: 48.94268145725884
|
184 |
+
- task:
|
185 |
+
type: Classification
|
186 |
+
dataset:
|
187 |
+
type: mteb/banking77
|
188 |
+
name: MTEB Banking77Classification
|
189 |
+
config: default
|
190 |
+
split: test
|
191 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
192 |
+
metrics:
|
193 |
+
- type: accuracy
|
194 |
+
value: 84.05519480519482
|
195 |
+
- type: f1
|
196 |
+
value: 83.94978356890618
|
197 |
+
- task:
|
198 |
+
type: Clustering
|
199 |
+
dataset:
|
200 |
+
type: mteb/biorxiv-clustering-p2p
|
201 |
+
name: MTEB BiorxivClusteringP2P
|
202 |
+
config: default
|
203 |
+
split: test
|
204 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
205 |
+
metrics:
|
206 |
+
- type: v_measure
|
207 |
+
value: 32.2033276486685
|
208 |
+
- task:
|
209 |
+
type: Clustering
|
210 |
+
dataset:
|
211 |
+
type: mteb/biorxiv-clustering-s2s
|
212 |
+
name: MTEB BiorxivClusteringS2S
|
213 |
+
config: default
|
214 |
+
split: test
|
215 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
216 |
+
metrics:
|
217 |
+
- type: v_measure
|
218 |
+
value: 26.631954164406014
|
219 |
- task:
|
220 |
type: Retrieval
|
221 |
dataset:
|
222 |
type: BeIR/cqadupstack
|
223 |
+
name: MTEB CQADupstackAndroidRetrieval
|
224 |
config: default
|
225 |
split: test
|
226 |
revision: None
|
227 |
metrics:
|
228 |
- type: map_at_1
|
229 |
+
value: 29.625
|
230 |
- type: map_at_10
|
231 |
+
value: 40.037
|
232 |
- type: map_at_100
|
233 |
+
value: 41.52
|
234 |
- type: map_at_1000
|
235 |
+
value: 41.654
|
236 |
- type: map_at_3
|
237 |
+
value: 36.818
|
238 |
- type: map_at_5
|
239 |
+
value: 38.426
|
240 |
- type: mrr_at_1
|
241 |
+
value: 35.336
|
242 |
- type: mrr_at_10
|
243 |
+
value: 45.395
|
244 |
- type: mrr_at_100
|
245 |
+
value: 46.221000000000004
|
246 |
- type: mrr_at_1000
|
247 |
+
value: 46.264
|
248 |
- type: mrr_at_3
|
249 |
+
value: 42.823
|
250 |
- type: mrr_at_5
|
251 |
+
value: 44.204
|
252 |
- type: ndcg_at_1
|
253 |
+
value: 35.336
|
254 |
- type: ndcg_at_10
|
255 |
+
value: 46.326
|
256 |
- type: ndcg_at_100
|
257 |
+
value: 51.795
|
258 |
- type: ndcg_at_1000
|
259 |
+
value: 53.834
|
260 |
- type: ndcg_at_3
|
261 |
+
value: 41.299
|
262 |
- type: ndcg_at_5
|
263 |
+
value: 43.247
|
264 |
- type: precision_at_1
|
265 |
+
value: 35.336
|
266 |
- type: precision_at_10
|
267 |
+
value: 8.627
|
268 |
- type: precision_at_100
|
269 |
+
value: 1.428
|
270 |
- type: precision_at_1000
|
271 |
+
value: 0.197
|
272 |
- type: precision_at_3
|
273 |
+
value: 19.647000000000002
|
274 |
- type: precision_at_5
|
275 |
+
value: 13.733999999999998
|
276 |
- type: recall_at_1
|
277 |
+
value: 29.625
|
278 |
- type: recall_at_10
|
279 |
+
value: 59.165
|
280 |
- type: recall_at_100
|
281 |
+
value: 81.675
|
282 |
- type: recall_at_1000
|
283 |
+
value: 94.17
|
284 |
- type: recall_at_3
|
285 |
+
value: 44.485
|
286 |
- type: recall_at_5
|
287 |
+
value: 50.198
|
288 |
- task:
|
289 |
type: Retrieval
|
290 |
dataset:
|
291 |
type: BeIR/cqadupstack
|
292 |
+
name: MTEB CQADupstackEnglishRetrieval
|
293 |
config: default
|
294 |
split: test
|
295 |
revision: None
|
296 |
metrics:
|
297 |
- type: map_at_1
|
298 |
+
value: 26.687
|
299 |
- type: map_at_10
|
300 |
+
value: 36.062
|
301 |
- type: map_at_100
|
302 |
+
value: 37.263000000000005
|
303 |
- type: map_at_1000
|
304 |
+
value: 37.397999999999996
|
305 |
- type: map_at_3
|
306 |
+
value: 32.967
|
307 |
- type: map_at_5
|
308 |
+
value: 34.75
|
309 |
- type: mrr_at_1
|
310 |
+
value: 33.885
|
311 |
- type: mrr_at_10
|
312 |
+
value: 42.632999999999996
|
313 |
- type: mrr_at_100
|
314 |
+
value: 43.305
|
315 |
- type: mrr_at_1000
|
316 |
+
value: 43.354
|
317 |
- type: mrr_at_3
|
318 |
+
value: 39.958
|
319 |
- type: mrr_at_5
|
320 |
+
value: 41.63
|
321 |
- type: ndcg_at_1
|
322 |
+
value: 33.885
|
323 |
- type: ndcg_at_10
|
324 |
+
value: 42.001
|
325 |
- type: ndcg_at_100
|
326 |
+
value: 46.436
|
327 |
- type: ndcg_at_1000
|
328 |
+
value: 48.774
|
329 |
- type: ndcg_at_3
|
330 |
+
value: 37.183
|
331 |
- type: ndcg_at_5
|
332 |
+
value: 39.605000000000004
|
333 |
- type: precision_at_1
|
334 |
+
value: 33.885
|
335 |
- type: precision_at_10
|
336 |
+
value: 7.962
|
337 |
- type: precision_at_100
|
338 |
+
value: 1.283
|
339 |
- type: precision_at_1000
|
340 |
+
value: 0.18
|
341 |
- type: precision_at_3
|
342 |
+
value: 17.855999999999998
|
343 |
- type: precision_at_5
|
344 |
+
value: 13.083
|
345 |
- type: recall_at_1
|
346 |
+
value: 26.687
|
347 |
- type: recall_at_10
|
348 |
+
value: 52.75
|
349 |
- type: recall_at_100
|
350 |
+
value: 71.324
|
351 |
- type: recall_at_1000
|
352 |
+
value: 86.356
|
353 |
- type: recall_at_3
|
354 |
+
value: 38.83
|
355 |
- type: recall_at_5
|
356 |
+
value: 45.23
|
357 |
- task:
|
358 |
type: Retrieval
|
359 |
dataset:
|
360 |
type: BeIR/cqadupstack
|
361 |
+
name: MTEB CQADupstackGamingRetrieval
|
362 |
config: default
|
363 |
split: test
|
364 |
revision: None
|
365 |
metrics:
|
366 |
- type: map_at_1
|
367 |
+
value: 34.02
|
368 |
- type: map_at_10
|
369 |
+
value: 45.751999999999995
|
370 |
- type: map_at_100
|
371 |
+
value: 46.867
|
372 |
- type: map_at_1000
|
373 |
+
value: 46.93
|
374 |
- type: map_at_3
|
375 |
+
value: 42.409
|
376 |
- type: map_at_5
|
377 |
+
value: 44.464999999999996
|
378 |
- type: mrr_at_1
|
379 |
+
value: 38.307
|
380 |
- type: mrr_at_10
|
381 |
+
value: 48.718
|
382 |
- type: mrr_at_100
|
383 |
+
value: 49.509
|
384 |
- type: mrr_at_1000
|
385 |
+
value: 49.542
|
386 |
- type: mrr_at_3
|
387 |
+
value: 46.007999999999996
|
388 |
- type: mrr_at_5
|
389 |
+
value: 47.766999999999996
|
390 |
- type: ndcg_at_1
|
391 |
+
value: 38.307
|
392 |
- type: ndcg_at_10
|
393 |
+
value: 51.666999999999994
|
394 |
- type: ndcg_at_100
|
395 |
+
value: 56.242000000000004
|
396 |
- type: ndcg_at_1000
|
397 |
+
value: 57.477999999999994
|
398 |
- type: ndcg_at_3
|
399 |
+
value: 45.912
|
400 |
- type: ndcg_at_5
|
401 |
+
value: 49.106
|
402 |
- type: precision_at_1
|
403 |
+
value: 38.307
|
404 |
- type: precision_at_10
|
405 |
+
value: 8.476
|
406 |
- type: precision_at_100
|
407 |
+
value: 1.176
|
408 |
- type: precision_at_1000
|
409 |
+
value: 0.133
|
410 |
- type: precision_at_3
|
411 |
+
value: 20.522000000000002
|
412 |
- type: precision_at_5
|
413 |
+
value: 14.557999999999998
|
414 |
- type: recall_at_1
|
415 |
+
value: 34.02
|
416 |
- type: recall_at_10
|
417 |
+
value: 66.046
|
418 |
- type: recall_at_100
|
419 |
+
value: 85.817
|
420 |
- type: recall_at_1000
|
421 |
+
value: 94.453
|
422 |
- type: recall_at_3
|
423 |
+
value: 51.059
|
424 |
- type: recall_at_5
|
425 |
+
value: 58.667
|
426 |
- task:
|
427 |
type: Retrieval
|
428 |
dataset:
|
429 |
type: BeIR/cqadupstack
|
430 |
+
name: MTEB CQADupstackGisRetrieval
|
431 |
config: default
|
432 |
split: test
|
433 |
revision: None
|
434 |
metrics:
|
435 |
- type: map_at_1
|
436 |
+
value: 23.939
|
437 |
- type: map_at_10
|
438 |
+
value: 32.627
|
439 |
- type: map_at_100
|
440 |
+
value: 33.617999999999995
|
441 |
- type: map_at_1000
|
442 |
+
value: 33.701
|
443 |
- type: map_at_3
|
444 |
+
value: 30.11
|
445 |
- type: map_at_5
|
446 |
+
value: 31.380000000000003
|
447 |
- type: mrr_at_1
|
448 |
+
value: 25.989
|
449 |
- type: mrr_at_10
|
450 |
+
value: 34.655
|
451 |
- type: mrr_at_100
|
452 |
+
value: 35.502
|
453 |
- type: mrr_at_1000
|
454 |
+
value: 35.563
|
455 |
- type: mrr_at_3
|
456 |
+
value: 32.109
|
457 |
- type: mrr_at_5
|
458 |
+
value: 33.426
|
459 |
- type: ndcg_at_1
|
460 |
+
value: 25.989
|
461 |
- type: ndcg_at_10
|
462 |
+
value: 37.657000000000004
|
463 |
- type: ndcg_at_100
|
464 |
+
value: 42.467
|
465 |
- type: ndcg_at_1000
|
466 |
+
value: 44.677
|
467 |
- type: ndcg_at_3
|
468 |
+
value: 32.543
|
469 |
- type: ndcg_at_5
|
470 |
+
value: 34.74
|
471 |
- type: precision_at_1
|
472 |
+
value: 25.989
|
473 |
- type: precision_at_10
|
474 |
+
value: 5.876
|
475 |
- type: precision_at_100
|
476 |
+
value: 0.8710000000000001
|
477 |
- type: precision_at_1000
|
478 |
+
value: 0.11
|
479 |
- type: precision_at_3
|
480 |
+
value: 13.861
|
481 |
- type: precision_at_5
|
482 |
+
value: 9.626999999999999
|
483 |
- type: recall_at_1
|
484 |
+
value: 23.939
|
485 |
- type: recall_at_10
|
486 |
+
value: 51.28
|
487 |
- type: recall_at_100
|
488 |
+
value: 73.428
|
489 |
- type: recall_at_1000
|
490 |
+
value: 90.309
|
491 |
- type: recall_at_3
|
492 |
+
value: 37.245
|
493 |
- type: recall_at_5
|
494 |
+
value: 42.541000000000004
|
495 |
- task:
|
496 |
type: Retrieval
|
497 |
dataset:
|
498 |
type: BeIR/cqadupstack
|
499 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
500 |
config: default
|
501 |
split: test
|
502 |
revision: None
|
503 |
metrics:
|
504 |
- type: map_at_1
|
505 |
+
value: 15.082
|
506 |
- type: map_at_10
|
507 |
+
value: 22.486
|
508 |
- type: map_at_100
|
509 |
+
value: 23.687
|
510 |
- type: map_at_1000
|
511 |
+
value: 23.807000000000002
|
512 |
- type: map_at_3
|
513 |
+
value: 20.076
|
514 |
- type: map_at_5
|
515 |
+
value: 21.362000000000002
|
516 |
- type: mrr_at_1
|
517 |
+
value: 18.532
|
518 |
- type: mrr_at_10
|
519 |
+
value: 26.605
|
520 |
- type: mrr_at_100
|
521 |
+
value: 27.628999999999998
|
522 |
- type: mrr_at_1000
|
523 |
+
value: 27.698
|
524 |
- type: mrr_at_3
|
525 |
+
value: 23.964
|
526 |
- type: mrr_at_5
|
527 |
+
value: 25.319000000000003
|
528 |
- type: ndcg_at_1
|
529 |
+
value: 18.532
|
530 |
- type: ndcg_at_10
|
531 |
+
value: 27.474999999999998
|
532 |
- type: ndcg_at_100
|
533 |
+
value: 33.357
|
534 |
- type: ndcg_at_1000
|
535 |
+
value: 36.361
|
536 |
- type: ndcg_at_3
|
537 |
+
value: 22.851
|
538 |
- type: ndcg_at_5
|
539 |
+
value: 24.87
|
540 |
- type: precision_at_1
|
541 |
+
value: 18.532
|
542 |
- type: precision_at_10
|
543 |
+
value: 5.210999999999999
|
544 |
- type: precision_at_100
|
545 |
+
value: 0.9329999999999999
|
546 |
- type: precision_at_1000
|
547 |
+
value: 0.134
|
548 |
- type: precision_at_3
|
549 |
+
value: 11.235000000000001
|
550 |
- type: precision_at_5
|
551 |
+
value: 8.134
|
552 |
- type: recall_at_1
|
553 |
+
value: 15.082
|
554 |
- type: recall_at_10
|
555 |
+
value: 38.759
|
556 |
- type: recall_at_100
|
557 |
+
value: 64.621
|
558 |
- type: recall_at_1000
|
559 |
+
value: 86.162
|
560 |
- type: recall_at_3
|
561 |
+
value: 26.055
|
562 |
- type: recall_at_5
|
563 |
+
value: 31.208999999999996
|
564 |
- task:
|
565 |
type: Retrieval
|
566 |
dataset:
|
567 |
type: BeIR/cqadupstack
|
568 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
569 |
config: default
|
570 |
split: test
|
571 |
revision: None
|
572 |
metrics:
|
573 |
- type: map_at_1
|
574 |
+
value: 24.759999999999998
|
575 |
- type: map_at_10
|
576 |
+
value: 33.706
|
577 |
- type: map_at_100
|
578 |
+
value: 35.0
|
579 |
- type: map_at_1000
|
580 |
+
value: 35.134
|
581 |
- type: map_at_3
|
582 |
+
value: 30.789
|
583 |
- type: map_at_5
|
584 |
+
value: 32.427
|
585 |
- type: mrr_at_1
|
586 |
+
value: 29.548000000000002
|
587 |
- type: mrr_at_10
|
588 |
+
value: 38.521
|
589 |
- type: mrr_at_100
|
590 |
+
value: 39.432
|
591 |
- type: mrr_at_1000
|
592 |
+
value: 39.494
|
593 |
- type: mrr_at_3
|
594 |
+
value: 35.691
|
595 |
- type: mrr_at_5
|
596 |
+
value: 37.424
|
597 |
- type: ndcg_at_1
|
598 |
+
value: 29.548000000000002
|
599 |
- type: ndcg_at_10
|
600 |
+
value: 39.301
|
601 |
- type: ndcg_at_100
|
602 |
+
value: 44.907000000000004
|
603 |
- type: ndcg_at_1000
|
604 |
+
value: 47.494
|
605 |
- type: ndcg_at_3
|
606 |
+
value: 34.08
|
607 |
- type: ndcg_at_5
|
608 |
+
value: 36.649
|
609 |
- type: precision_at_1
|
610 |
+
value: 29.548000000000002
|
611 |
- type: precision_at_10
|
612 |
+
value: 7.084
|
613 |
- type: precision_at_100
|
614 |
+
value: 1.169
|
615 |
- type: precision_at_1000
|
616 |
+
value: 0.158
|
617 |
- type: precision_at_3
|
618 |
+
value: 15.881
|
619 |
- type: precision_at_5
|
620 |
+
value: 11.53
|
621 |
- type: recall_at_1
|
622 |
+
value: 24.759999999999998
|
623 |
- type: recall_at_10
|
624 |
+
value: 51.202000000000005
|
625 |
- type: recall_at_100
|
626 |
+
value: 74.542
|
627 |
- type: recall_at_1000
|
628 |
+
value: 91.669
|
629 |
- type: recall_at_3
|
630 |
+
value: 36.892
|
631 |
- type: recall_at_5
|
632 |
+
value: 43.333
|
633 |
- task:
|
634 |
type: Retrieval
|
635 |
dataset:
|
636 |
type: BeIR/cqadupstack
|
637 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
638 |
config: default
|
639 |
split: test
|
640 |
revision: None
|
641 |
metrics:
|
642 |
- type: map_at_1
|
643 |
+
value: 23.247999999999998
|
644 |
- type: map_at_10
|
645 |
+
value: 31.878
|
646 |
- type: map_at_100
|
647 |
+
value: 33.135
|
648 |
- type: map_at_1000
|
649 |
+
value: 33.263999999999996
|
650 |
- type: map_at_3
|
651 |
+
value: 29.406
|
652 |
- type: map_at_5
|
653 |
+
value: 30.602
|
654 |
- type: mrr_at_1
|
655 |
+
value: 28.767
|
656 |
- type: mrr_at_10
|
657 |
+
value: 36.929
|
658 |
- type: mrr_at_100
|
659 |
+
value: 37.844
|
660 |
- type: mrr_at_1000
|
661 |
+
value: 37.913000000000004
|
662 |
- type: mrr_at_3
|
663 |
+
value: 34.589
|
664 |
- type: mrr_at_5
|
665 |
+
value: 35.908
|
666 |
- type: ndcg_at_1
|
667 |
+
value: 28.767
|
668 |
- type: ndcg_at_10
|
669 |
+
value: 37.172
|
670 |
- type: ndcg_at_100
|
671 |
+
value: 42.842
|
672 |
- type: ndcg_at_1000
|
673 |
+
value: 45.534
|
674 |
- type: ndcg_at_3
|
675 |
+
value: 32.981
|
676 |
- type: ndcg_at_5
|
677 |
+
value: 34.628
|
678 |
- type: precision_at_1
|
679 |
+
value: 28.767
|
680 |
- type: precision_at_10
|
681 |
+
value: 6.678000000000001
|
682 |
- type: precision_at_100
|
683 |
+
value: 1.1199999999999999
|
684 |
- type: precision_at_1000
|
685 |
+
value: 0.155
|
686 |
- type: precision_at_3
|
687 |
+
value: 15.715000000000002
|
688 |
- type: precision_at_5
|
689 |
+
value: 10.913
|
690 |
- type: recall_at_1
|
691 |
+
value: 23.247999999999998
|
692 |
- type: recall_at_10
|
693 |
+
value: 48.16
|
694 |
- type: recall_at_100
|
695 |
+
value: 72.753
|
696 |
- type: recall_at_1000
|
697 |
+
value: 90.8
|
698 |
- type: recall_at_3
|
699 |
+
value: 35.961999999999996
|
700 |
- type: recall_at_5
|
701 |
+
value: 40.504
|
702 |
- task:
|
703 |
type: Retrieval
|
704 |
dataset:
|
705 |
type: BeIR/cqadupstack
|
706 |
+
name: MTEB CQADupstackRetrieval
|
707 |
config: default
|
708 |
split: test
|
709 |
revision: None
|
710 |
metrics:
|
711 |
- type: map_at_1
|
712 |
+
value: 23.825583333333334
|
713 |
- type: map_at_10
|
714 |
+
value: 32.2845
|
715 |
- type: map_at_100
|
716 |
+
value: 33.48566666666667
|
717 |
- type: map_at_1000
|
718 |
+
value: 33.60833333333333
|
719 |
- type: map_at_3
|
720 |
+
value: 29.604916666666664
|
721 |
- type: map_at_5
|
722 |
+
value: 31.015333333333334
|
723 |
- type: mrr_at_1
|
724 |
+
value: 27.850916666666663
|
725 |
- type: mrr_at_10
|
726 |
+
value: 36.122416666666666
|
727 |
- type: mrr_at_100
|
728 |
+
value: 37.01275
|
729 |
- type: mrr_at_1000
|
730 |
+
value: 37.07566666666667
|
731 |
- type: mrr_at_3
|
732 |
+
value: 33.665749999999996
|
733 |
- type: mrr_at_5
|
734 |
+
value: 35.00916666666667
|
735 |
- type: ndcg_at_1
|
736 |
+
value: 27.850916666666663
|
737 |
- type: ndcg_at_10
|
738 |
+
value: 37.47625
|
739 |
- type: ndcg_at_100
|
740 |
+
value: 42.74433333333334
|
741 |
- type: ndcg_at_1000
|
742 |
+
value: 45.21991666666667
|
743 |
- type: ndcg_at_3
|
744 |
+
value: 32.70916666666667
|
745 |
- type: ndcg_at_5
|
746 |
+
value: 34.80658333333333
|
747 |
- type: precision_at_1
|
748 |
+
value: 27.850916666666663
|
749 |
- type: precision_at_10
|
750 |
+
value: 6.5761666666666665
|
751 |
- type: precision_at_100
|
752 |
+
value: 1.0879999999999999
|
753 |
- type: precision_at_1000
|
754 |
+
value: 0.15058333333333332
|
755 |
- type: precision_at_3
|
756 |
+
value: 14.933833333333336
|
757 |
- type: precision_at_5
|
758 |
+
value: 10.607249999999999
|
759 |
- type: recall_at_1
|
760 |
+
value: 23.825583333333334
|
761 |
- type: recall_at_10
|
762 |
+
value: 49.100500000000004
|
763 |
- type: recall_at_100
|
764 |
+
value: 72.21133333333334
|
765 |
- type: recall_at_1000
|
766 |
+
value: 89.34791666666666
|
767 |
- type: recall_at_3
|
768 |
+
value: 35.90525
|
769 |
- type: recall_at_5
|
770 |
+
value: 41.24583333333334
|
771 |
- task:
|
772 |
type: Retrieval
|
773 |
dataset:
|
774 |
type: BeIR/cqadupstack
|
775 |
+
name: MTEB CQADupstackStatsRetrieval
|
776 |
config: default
|
777 |
split: test
|
778 |
revision: None
|
779 |
metrics:
|
780 |
- type: map_at_1
|
781 |
+
value: 21.343
|
782 |
- type: map_at_10
|
783 |
+
value: 27.313
|
784 |
- type: map_at_100
|
785 |
+
value: 28.316999999999997
|
786 |
- type: map_at_1000
|
787 |
+
value: 28.406
|
788 |
- type: map_at_3
|
789 |
+
value: 25.06
|
790 |
- type: map_at_5
|
791 |
+
value: 26.409
|
792 |
- type: mrr_at_1
|
793 |
+
value: 23.313
|
794 |
- type: mrr_at_10
|
795 |
+
value: 29.467
|
796 |
- type: mrr_at_100
|
797 |
+
value: 30.348999999999997
|
798 |
- type: mrr_at_1000
|
799 |
+
value: 30.42
|
800 |
- type: mrr_at_3
|
801 |
+
value: 27.173000000000002
|
802 |
- type: mrr_at_5
|
803 |
+
value: 28.461
|
804 |
- type: ndcg_at_1
|
805 |
+
value: 23.313
|
806 |
- type: ndcg_at_10
|
807 |
+
value: 31.183
|
808 |
- type: ndcg_at_100
|
809 |
+
value: 36.252
|
810 |
- type: ndcg_at_1000
|
811 |
+
value: 38.582
|
812 |
- type: ndcg_at_3
|
813 |
+
value: 26.838
|
814 |
- type: ndcg_at_5
|
815 |
+
value: 29.042
|
816 |
- type: precision_at_1
|
817 |
+
value: 23.313
|
818 |
- type: precision_at_10
|
819 |
+
value: 4.9079999999999995
|
820 |
- type: precision_at_100
|
821 |
+
value: 0.808
|
822 |
- type: precision_at_1000
|
823 |
+
value: 0.109
|
824 |
- type: precision_at_3
|
825 |
+
value: 11.299
|
826 |
- type: precision_at_5
|
827 |
+
value: 8.097999999999999
|
828 |
- type: recall_at_1
|
829 |
+
value: 21.343
|
830 |
- type: recall_at_10
|
831 |
+
value: 41.047
|
832 |
- type: recall_at_100
|
833 |
+
value: 64.372
|
834 |
- type: recall_at_1000
|
835 |
+
value: 81.499
|
836 |
- type: recall_at_3
|
837 |
+
value: 29.337000000000003
|
838 |
- type: recall_at_5
|
839 |
+
value: 34.756
|
840 |
- task:
|
841 |
type: Retrieval
|
842 |
dataset:
|
843 |
type: BeIR/cqadupstack
|
844 |
+
name: MTEB CQADupstackTexRetrieval
|
845 |
config: default
|
846 |
split: test
|
847 |
revision: None
|
848 |
metrics:
|
849 |
- type: map_at_1
|
850 |
+
value: 16.595
|
851 |
- type: map_at_10
|
852 |
+
value: 23.433
|
853 |
- type: map_at_100
|
854 |
+
value: 24.578
|
855 |
- type: map_at_1000
|
856 |
+
value: 24.709999999999997
|
857 |
- type: map_at_3
|
858 |
+
value: 21.268
|
859 |
- type: map_at_5
|
860 |
+
value: 22.393
|
861 |
- type: mrr_at_1
|
862 |
+
value: 20.131
|
863 |
- type: mrr_at_10
|
864 |
+
value: 27.026
|
865 |
- type: mrr_at_100
|
866 |
+
value: 28.003
|
867 |
- type: mrr_at_1000
|
868 |
+
value: 28.083999999999996
|
869 |
- type: mrr_at_3
|
870 |
+
value: 24.966
|
871 |
- type: mrr_at_5
|
872 |
+
value: 26.064999999999998
|
873 |
- type: ndcg_at_1
|
874 |
+
value: 20.131
|
875 |
- type: ndcg_at_10
|
876 |
+
value: 27.846
|
877 |
- type: ndcg_at_100
|
878 |
+
value: 33.318999999999996
|
879 |
- type: ndcg_at_1000
|
880 |
+
value: 36.403
|
881 |
- type: ndcg_at_3
|
882 |
+
value: 23.883
|
883 |
- type: ndcg_at_5
|
884 |
+
value: 25.595000000000002
|
885 |
- type: precision_at_1
|
886 |
+
value: 20.131
|
887 |
- type: precision_at_10
|
888 |
+
value: 5.034000000000001
|
889 |
- type: precision_at_100
|
890 |
+
value: 0.9079999999999999
|
891 |
- type: precision_at_1000
|
892 |
+
value: 0.13699999999999998
|
893 |
- type: precision_at_3
|
894 |
+
value: 11.23
|
895 |
- type: precision_at_5
|
896 |
+
value: 8.032
|
897 |
- type: recall_at_1
|
898 |
+
value: 16.595
|
899 |
- type: recall_at_10
|
900 |
+
value: 37.576
|
901 |
- type: recall_at_100
|
902 |
+
value: 62.044
|
903 |
- type: recall_at_1000
|
904 |
+
value: 83.97
|
905 |
- type: recall_at_3
|
906 |
+
value: 26.631
|
907 |
- type: recall_at_5
|
908 |
+
value: 31.002000000000002
|
909 |
- task:
|
910 |
type: Retrieval
|
911 |
dataset:
|
912 |
type: BeIR/cqadupstack
|
913 |
+
name: MTEB CQADupstackUnixRetrieval
|
914 |
config: default
|
915 |
split: test
|
916 |
revision: None
|
917 |
metrics:
|
918 |
- type: map_at_1
|
919 |
+
value: 24.85
|
920 |
- type: map_at_10
|
921 |
+
value: 32.762
|
922 |
- type: map_at_100
|
923 |
+
value: 33.896
|
924 |
- type: map_at_1000
|
925 |
+
value: 34.006
|
926 |
- type: map_at_3
|
927 |
+
value: 29.965000000000003
|
928 |
- type: map_at_5
|
929 |
+
value: 31.485999999999997
|
930 |
- type: mrr_at_1
|
931 |
+
value: 28.731
|
932 |
- type: mrr_at_10
|
933 |
+
value: 36.504999999999995
|
934 |
- type: mrr_at_100
|
935 |
+
value: 37.364999999999995
|
936 |
- type: mrr_at_1000
|
937 |
+
value: 37.431
|
938 |
- type: mrr_at_3
|
939 |
+
value: 34.033
|
940 |
- type: mrr_at_5
|
941 |
+
value: 35.4
|
942 |
- type: ndcg_at_1
|
943 |
+
value: 28.731
|
944 |
- type: ndcg_at_10
|
945 |
+
value: 37.788
|
946 |
- type: ndcg_at_100
|
947 |
+
value: 43.1
|
948 |
- type: ndcg_at_1000
|
949 |
+
value: 45.623999999999995
|
950 |
- type: ndcg_at_3
|
951 |
+
value: 32.717
|
952 |
- type: ndcg_at_5
|
953 |
+
value: 35.024
|
954 |
- type: precision_at_1
|
955 |
+
value: 28.731
|
956 |
- type: precision_at_10
|
957 |
+
value: 6.371
|
958 |
- type: precision_at_100
|
959 |
+
value: 1.02
|
960 |
- type: precision_at_1000
|
961 |
+
value: 0.135
|
962 |
- type: precision_at_3
|
963 |
+
value: 14.521
|
964 |
- type: precision_at_5
|
965 |
+
value: 10.41
|
966 |
- type: recall_at_1
|
967 |
+
value: 24.85
|
968 |
- type: recall_at_10
|
969 |
+
value: 49.335
|
970 |
- type: recall_at_100
|
971 |
+
value: 72.792
|
972 |
- type: recall_at_1000
|
973 |
+
value: 90.525
|
974 |
- type: recall_at_3
|
975 |
+
value: 35.698
|
976 |
- type: recall_at_5
|
977 |
+
value: 41.385
|
978 |
- task:
|
979 |
type: Retrieval
|
980 |
dataset:
|
981 |
type: BeIR/cqadupstack
|
982 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
983 |
config: default
|
984 |
split: test
|
985 |
revision: None
|
986 |
metrics:
|
987 |
- type: map_at_1
|
988 |
+
value: 23.016000000000002
|
989 |
- type: map_at_10
|
990 |
+
value: 32.126
|
991 |
- type: map_at_100
|
992 |
+
value: 33.786
|
993 |
- type: map_at_1000
|
994 |
+
value: 34.012
|
995 |
- type: map_at_3
|
996 |
+
value: 29.256
|
997 |
- type: map_at_5
|
998 |
+
value: 30.552
|
999 |
- type: mrr_at_1
|
1000 |
+
value: 27.272999999999996
|
1001 |
- type: mrr_at_10
|
1002 |
+
value: 35.967
|
1003 |
- type: mrr_at_100
|
1004 |
+
value: 37.082
|
1005 |
- type: mrr_at_1000
|
1006 |
+
value: 37.146
|
1007 |
- type: mrr_at_3
|
1008 |
+
value: 33.531
|
1009 |
- type: mrr_at_5
|
1010 |
+
value: 34.697
|
1011 |
- type: ndcg_at_1
|
1012 |
+
value: 27.272999999999996
|
1013 |
- type: ndcg_at_10
|
1014 |
+
value: 37.945
|
1015 |
- type: ndcg_at_100
|
1016 |
+
value: 43.928
|
1017 |
- type: ndcg_at_1000
|
1018 |
+
value: 46.772999999999996
|
1019 |
- type: ndcg_at_3
|
1020 |
+
value: 33.111000000000004
|
1021 |
- type: ndcg_at_5
|
1022 |
+
value: 34.794000000000004
|
1023 |
- type: precision_at_1
|
1024 |
+
value: 27.272999999999996
|
1025 |
- type: precision_at_10
|
1026 |
+
value: 7.53
|
1027 |
- type: precision_at_100
|
1028 |
+
value: 1.512
|
1029 |
- type: precision_at_1000
|
1030 |
+
value: 0.241
|
1031 |
- type: precision_at_3
|
1032 |
+
value: 15.547
|
1033 |
- type: precision_at_5
|
1034 |
+
value: 11.146
|
1035 |
- type: recall_at_1
|
1036 |
+
value: 23.016000000000002
|
1037 |
- type: recall_at_10
|
1038 |
+
value: 49.576
|
1039 |
- type: recall_at_100
|
1040 |
+
value: 75.74600000000001
|
1041 |
- type: recall_at_1000
|
1042 |
+
value: 94.069
|
1043 |
- type: recall_at_3
|
1044 |
+
value: 35.964
|
1045 |
- type: recall_at_5
|
1046 |
+
value: 40.455999999999996
|
1047 |
- task:
|
1048 |
type: Retrieval
|
1049 |
dataset:
|
1050 |
+
type: BeIR/cqadupstack
|
1051 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1052 |
config: default
|
1053 |
split: test
|
1054 |
revision: None
|
1055 |
metrics:
|
1056 |
- type: map_at_1
|
1057 |
+
value: 22.742
|
1058 |
- type: map_at_10
|
1059 |
+
value: 29.232000000000003
|
1060 |
- type: map_at_100
|
1061 |
+
value: 30.160999999999998
|
1062 |
- type: map_at_1000
|
1063 |
+
value: 30.278
|
1064 |
- type: map_at_3
|
1065 |
+
value: 27.134999999999998
|
1066 |
- type: map_at_5
|
1067 |
+
value: 27.932000000000002
|
1068 |
- type: mrr_at_1
|
1069 |
+
value: 24.399
|
1070 |
- type: mrr_at_10
|
1071 |
+
value: 31.048
|
1072 |
- type: mrr_at_100
|
1073 |
+
value: 31.912000000000003
|
1074 |
- type: mrr_at_1000
|
1075 |
+
value: 31.999
|
1076 |
- type: mrr_at_3
|
1077 |
+
value: 29.144
|
1078 |
- type: mrr_at_5
|
1079 |
+
value: 29.809
|
1080 |
- type: ndcg_at_1
|
1081 |
+
value: 24.399
|
1082 |
- type: ndcg_at_10
|
1083 |
+
value: 33.354
|
1084 |
- type: ndcg_at_100
|
1085 |
+
value: 38.287
|
1086 |
- type: ndcg_at_1000
|
1087 |
+
value: 41.105000000000004
|
1088 |
- type: ndcg_at_3
|
1089 |
+
value: 29.112
|
1090 |
- type: ndcg_at_5
|
1091 |
+
value: 30.379
|
1092 |
- type: precision_at_1
|
1093 |
+
value: 24.399
|
1094 |
- type: precision_at_10
|
1095 |
+
value: 5.157
|
1096 |
- type: precision_at_100
|
1097 |
+
value: 0.828
|
1098 |
- type: precision_at_1000
|
1099 |
+
value: 0.11800000000000001
|
1100 |
- type: precision_at_3
|
1101 |
+
value: 11.892
|
1102 |
- type: precision_at_5
|
1103 |
+
value: 8.022
|
1104 |
- type: recall_at_1
|
1105 |
+
value: 22.742
|
1106 |
- type: recall_at_10
|
1107 |
+
value: 44.31
|
1108 |
- type: recall_at_100
|
1109 |
+
value: 67.422
|
1110 |
- type: recall_at_1000
|
1111 |
+
value: 88.193
|
1112 |
- type: recall_at_3
|
1113 |
+
value: 32.705
|
1114 |
- type: recall_at_5
|
1115 |
+
value: 35.669000000000004
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1116 |
- task:
|
1117 |
type: Retrieval
|
1118 |
dataset:
|
|
|
1123 |
revision: None
|
1124 |
metrics:
|
1125 |
- type: map_at_1
|
1126 |
+
value: 9.067
|
1127 |
- type: map_at_10
|
1128 |
+
value: 14.821000000000002
|
1129 |
- type: map_at_100
|
1130 |
+
value: 16.195
|
1131 |
- type: map_at_1000
|
1132 |
+
value: 16.359
|
1133 |
- type: map_at_3
|
1134 |
+
value: 12.666
|
1135 |
- type: map_at_5
|
1136 |
+
value: 13.675999999999998
|
1137 |
- type: mrr_at_1
|
1138 |
+
value: 20.326
|
1139 |
- type: mrr_at_10
|
1140 |
+
value: 29.798000000000002
|
1141 |
- type: mrr_at_100
|
1142 |
+
value: 30.875000000000004
|
1143 |
- type: mrr_at_1000
|
1144 |
+
value: 30.928
|
1145 |
- type: mrr_at_3
|
1146 |
+
value: 26.678
|
1147 |
- type: mrr_at_5
|
1148 |
+
value: 28.433000000000003
|
1149 |
- type: ndcg_at_1
|
1150 |
+
value: 20.326
|
1151 |
- type: ndcg_at_10
|
1152 |
+
value: 21.477
|
1153 |
- type: ndcg_at_100
|
1154 |
+
value: 27.637
|
1155 |
- type: ndcg_at_1000
|
1156 |
+
value: 30.953000000000003
|
1157 |
- type: ndcg_at_3
|
1158 |
+
value: 17.456
|
1159 |
- type: ndcg_at_5
|
1160 |
+
value: 18.789
|
1161 |
- type: precision_at_1
|
1162 |
+
value: 20.326
|
1163 |
- type: precision_at_10
|
1164 |
+
value: 6.482
|
1165 |
- type: precision_at_100
|
1166 |
+
value: 1.302
|
1167 |
- type: precision_at_1000
|
1168 |
+
value: 0.191
|
1169 |
- type: precision_at_3
|
1170 |
+
value: 12.53
|
1171 |
- type: precision_at_5
|
1172 |
+
value: 9.603
|
1173 |
- type: recall_at_1
|
1174 |
+
value: 9.067
|
1175 |
- type: recall_at_10
|
1176 |
+
value: 26.246000000000002
|
1177 |
- type: recall_at_100
|
1178 |
+
value: 47.837
|
1179 |
- type: recall_at_1000
|
1180 |
+
value: 66.637
|
1181 |
- type: recall_at_3
|
1182 |
+
value: 16.468
|
1183 |
- type: recall_at_5
|
1184 |
+
value: 20.088
|
1185 |
- task:
|
1186 |
type: Retrieval
|
1187 |
dataset:
|
|
|
1192 |
revision: None
|
1193 |
metrics:
|
1194 |
- type: map_at_1
|
1195 |
+
value: 7.563000000000001
|
1196 |
- type: map_at_10
|
1197 |
+
value: 15.22
|
1198 |
- type: map_at_100
|
1199 |
+
value: 20.048
|
1200 |
- type: map_at_1000
|
1201 |
+
value: 21.17
|
1202 |
- type: map_at_3
|
1203 |
+
value: 11.627
|
1204 |
- type: map_at_5
|
1205 |
+
value: 13.239
|
1206 |
- type: mrr_at_1
|
1207 |
+
value: 56.25
|
1208 |
- type: mrr_at_10
|
1209 |
+
value: 64.846
|
1210 |
- type: mrr_at_100
|
1211 |
+
value: 65.405
|
1212 |
- type: mrr_at_1000
|
1213 |
+
value: 65.41799999999999
|
1214 |
- type: mrr_at_3
|
1215 |
+
value: 63.125
|
1216 |
- type: mrr_at_5
|
1217 |
+
value: 64.1
|
1218 |
- type: ndcg_at_1
|
1219 |
+
value: 45.0
|
1220 |
- type: ndcg_at_10
|
1221 |
+
value: 32.437
|
1222 |
- type: ndcg_at_100
|
1223 |
+
value: 35.483
|
1224 |
- type: ndcg_at_1000
|
1225 |
+
value: 42.186
|
1226 |
- type: ndcg_at_3
|
1227 |
+
value: 37.297000000000004
|
1228 |
- type: ndcg_at_5
|
1229 |
+
value: 34.697
|
1230 |
- type: precision_at_1
|
1231 |
+
value: 56.25
|
1232 |
- type: precision_at_10
|
1233 |
+
value: 25.15
|
1234 |
- type: precision_at_100
|
1235 |
+
value: 7.539999999999999
|
1236 |
- type: precision_at_1000
|
1237 |
+
value: 1.678
|
1238 |
- type: precision_at_3
|
1239 |
+
value: 40.666999999999994
|
1240 |
- type: precision_at_5
|
1241 |
+
value: 33.45
|
1242 |
- type: recall_at_1
|
1243 |
+
value: 7.563000000000001
|
1244 |
- type: recall_at_10
|
1245 |
+
value: 19.969
|
1246 |
- type: recall_at_100
|
1247 |
+
value: 40.113
|
1248 |
- type: recall_at_1000
|
1249 |
+
value: 61.72299999999999
|
1250 |
- type: recall_at_3
|
1251 |
+
value: 12.950999999999999
|
1252 |
- type: recall_at_5
|
1253 |
+
value: 15.690999999999999
|
1254 |
- task:
|
1255 |
type: Classification
|
1256 |
dataset:
|
|
|
1261 |
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1262 |
metrics:
|
1263 |
- type: accuracy
|
1264 |
+
value: 44.675000000000004
|
1265 |
- type: f1
|
1266 |
+
value: 40.779372586075105
|
1267 |
- task:
|
1268 |
type: Retrieval
|
1269 |
dataset:
|
|
|
1274 |
revision: None
|
1275 |
metrics:
|
1276 |
- type: map_at_1
|
1277 |
+
value: 57.406
|
1278 |
- type: map_at_10
|
1279 |
+
value: 67.69500000000001
|
1280 |
- type: map_at_100
|
1281 |
+
value: 68.08
|
1282 |
- type: map_at_1000
|
1283 |
+
value: 68.095
|
1284 |
- type: map_at_3
|
1285 |
+
value: 65.688
|
1286 |
- type: map_at_5
|
1287 |
+
value: 66.93
|
1288 |
- type: mrr_at_1
|
1289 |
+
value: 61.941
|
1290 |
- type: mrr_at_10
|
1291 |
+
value: 72.513
|
1292 |
- type: mrr_at_100
|
1293 |
+
value: 72.83699999999999
|
1294 |
- type: mrr_at_1000
|
1295 |
+
value: 72.844
|
1296 |
- type: mrr_at_3
|
1297 |
+
value: 70.60499999999999
|
1298 |
- type: mrr_at_5
|
1299 |
+
value: 71.807
|
1300 |
- type: ndcg_at_1
|
1301 |
+
value: 61.941
|
1302 |
- type: ndcg_at_10
|
1303 |
+
value: 73.29
|
1304 |
- type: ndcg_at_100
|
1305 |
+
value: 74.96300000000001
|
1306 |
- type: ndcg_at_1000
|
1307 |
+
value: 75.28200000000001
|
1308 |
- type: ndcg_at_3
|
1309 |
+
value: 69.491
|
1310 |
- type: ndcg_at_5
|
1311 |
+
value: 71.573
|
1312 |
- type: precision_at_1
|
1313 |
+
value: 61.941
|
1314 |
- type: precision_at_10
|
1315 |
+
value: 9.388
|
1316 |
- type: precision_at_100
|
1317 |
+
value: 1.0290000000000001
|
1318 |
- type: precision_at_1000
|
1319 |
value: 0.107
|
1320 |
- type: precision_at_3
|
1321 |
+
value: 27.423
|
1322 |
- type: precision_at_5
|
1323 |
+
value: 17.627000000000002
|
1324 |
- type: recall_at_1
|
1325 |
+
value: 57.406
|
1326 |
- type: recall_at_10
|
1327 |
+
value: 85.975
|
1328 |
- type: recall_at_100
|
1329 |
+
value: 93.29899999999999
|
1330 |
- type: recall_at_1000
|
1331 |
+
value: 95.531
|
1332 |
- type: recall_at_3
|
1333 |
+
value: 75.624
|
1334 |
- type: recall_at_5
|
1335 |
+
value: 80.78999999999999
|
1336 |
- task:
|
1337 |
type: Retrieval
|
1338 |
dataset:
|
|
|
1343 |
revision: None
|
1344 |
metrics:
|
1345 |
- type: map_at_1
|
1346 |
+
value: 16.314999999999998
|
1347 |
- type: map_at_10
|
1348 |
+
value: 26.678
|
1349 |
- type: map_at_100
|
1350 |
+
value: 28.322000000000003
|
1351 |
- type: map_at_1000
|
1352 |
+
value: 28.519
|
1353 |
- type: map_at_3
|
1354 |
+
value: 23.105
|
1355 |
- type: map_at_5
|
1356 |
+
value: 24.808
|
1357 |
- type: mrr_at_1
|
1358 |
+
value: 33.333
|
1359 |
- type: mrr_at_10
|
1360 |
+
value: 41.453
|
1361 |
- type: mrr_at_100
|
1362 |
+
value: 42.339
|
1363 |
- type: mrr_at_1000
|
1364 |
+
value: 42.39
|
1365 |
- type: mrr_at_3
|
1366 |
+
value: 38.863
|
1367 |
- type: mrr_at_5
|
1368 |
+
value: 40.159
|
1369 |
- type: ndcg_at_1
|
1370 |
+
value: 33.333
|
1371 |
- type: ndcg_at_10
|
1372 |
+
value: 34.062
|
1373 |
- type: ndcg_at_100
|
1374 |
+
value: 40.595
|
1375 |
- type: ndcg_at_1000
|
1376 |
+
value: 44.124
|
1377 |
- type: ndcg_at_3
|
1378 |
+
value: 30.689
|
1379 |
- type: ndcg_at_5
|
1380 |
+
value: 31.255
|
1381 |
- type: precision_at_1
|
1382 |
+
value: 33.333
|
1383 |
- type: precision_at_10
|
1384 |
+
value: 9.722
|
1385 |
- type: precision_at_100
|
1386 |
+
value: 1.6480000000000001
|
1387 |
- type: precision_at_1000
|
1388 |
+
value: 0.22699999999999998
|
1389 |
- type: precision_at_3
|
1390 |
+
value: 20.936
|
1391 |
- type: precision_at_5
|
1392 |
+
value: 15.154
|
1393 |
- type: recall_at_1
|
1394 |
+
value: 16.314999999999998
|
1395 |
- type: recall_at_10
|
1396 |
+
value: 41.221000000000004
|
1397 |
- type: recall_at_100
|
1398 |
+
value: 65.857
|
1399 |
- type: recall_at_1000
|
1400 |
+
value: 87.327
|
1401 |
- type: recall_at_3
|
1402 |
+
value: 27.435
|
1403 |
- type: recall_at_5
|
1404 |
+
value: 32.242
|
1405 |
- task:
|
1406 |
type: Retrieval
|
1407 |
dataset:
|
|
|
1412 |
revision: None
|
1413 |
metrics:
|
1414 |
- type: map_at_1
|
1415 |
+
value: 31.978
|
1416 |
- type: map_at_10
|
1417 |
+
value: 43.784
|
1418 |
- type: map_at_100
|
1419 |
+
value: 44.547
|
1420 |
- type: map_at_1000
|
1421 |
+
value: 44.614
|
1422 |
- type: map_at_3
|
1423 |
+
value: 41.317
|
1424 |
- type: map_at_5
|
1425 |
+
value: 42.812
|
1426 |
- type: mrr_at_1
|
1427 |
+
value: 63.956999999999994
|
1428 |
- type: mrr_at_10
|
1429 |
+
value: 70.502
|
1430 |
- type: mrr_at_100
|
1431 |
+
value: 70.845
|
1432 |
- type: mrr_at_1000
|
1433 |
+
value: 70.865
|
1434 |
- type: mrr_at_3
|
1435 |
+
value: 69.192
|
1436 |
- type: mrr_at_5
|
1437 |
+
value: 69.994
|
1438 |
- type: ndcg_at_1
|
1439 |
+
value: 63.956999999999994
|
1440 |
- type: ndcg_at_10
|
1441 |
+
value: 52.782
|
1442 |
- type: ndcg_at_100
|
1443 |
+
value: 55.78999999999999
|
1444 |
- type: ndcg_at_1000
|
1445 |
+
value: 57.289
|
1446 |
- type: ndcg_at_3
|
1447 |
+
value: 48.864000000000004
|
1448 |
- type: ndcg_at_5
|
1449 |
+
value: 50.964
|
1450 |
- type: precision_at_1
|
1451 |
+
value: 63.956999999999994
|
1452 |
- type: precision_at_10
|
1453 |
+
value: 10.809000000000001
|
1454 |
- type: precision_at_100
|
1455 |
+
value: 1.319
|
1456 |
- type: precision_at_1000
|
1457 |
+
value: 0.152
|
1458 |
- type: precision_at_3
|
1459 |
+
value: 30.2
|
1460 |
- type: precision_at_5
|
1461 |
+
value: 19.787
|
1462 |
- type: recall_at_1
|
1463 |
+
value: 31.978
|
1464 |
- type: recall_at_10
|
1465 |
+
value: 54.045
|
1466 |
- type: recall_at_100
|
1467 |
+
value: 65.928
|
1468 |
- type: recall_at_1000
|
1469 |
+
value: 75.976
|
1470 |
- type: recall_at_3
|
1471 |
+
value: 45.300000000000004
|
1472 |
- type: recall_at_5
|
1473 |
+
value: 49.467
|
1474 |
- task:
|
1475 |
type: Classification
|
1476 |
dataset:
|
|
|
1481 |
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1482 |
metrics:
|
1483 |
- type: accuracy
|
1484 |
+
value: 63.8708
|
1485 |
- type: ap
|
1486 |
+
value: 59.02002684158838
|
1487 |
- type: f1
|
1488 |
+
value: 63.650055896985315
|
1489 |
- task:
|
1490 |
type: Retrieval
|
1491 |
dataset:
|
|
|
1496 |
revision: None
|
1497 |
metrics:
|
1498 |
- type: map_at_1
|
1499 |
+
value: 19.834
|
1500 |
- type: map_at_10
|
1501 |
+
value: 31.317
|
1502 |
- type: map_at_100
|
1503 |
+
value: 32.576
|
1504 |
- type: map_at_1000
|
1505 |
+
value: 32.631
|
1506 |
- type: map_at_3
|
1507 |
+
value: 27.728
|
1508 |
- type: map_at_5
|
1509 |
+
value: 29.720000000000002
|
1510 |
- type: mrr_at_1
|
1511 |
+
value: 20.43
|
1512 |
- type: mrr_at_10
|
1513 |
+
value: 31.868999999999996
|
1514 |
- type: mrr_at_100
|
1515 |
+
value: 33.074999999999996
|
1516 |
- type: mrr_at_1000
|
1517 |
+
value: 33.123999999999995
|
1518 |
- type: mrr_at_3
|
1519 |
+
value: 28.333000000000002
|
1520 |
- type: mrr_at_5
|
1521 |
+
value: 30.305
|
1522 |
- type: ndcg_at_1
|
1523 |
+
value: 20.43
|
1524 |
- type: ndcg_at_10
|
1525 |
+
value: 37.769000000000005
|
1526 |
- type: ndcg_at_100
|
1527 |
+
value: 43.924
|
1528 |
- type: ndcg_at_1000
|
1529 |
+
value: 45.323
|
1530 |
- type: ndcg_at_3
|
1531 |
+
value: 30.422
|
1532 |
- type: ndcg_at_5
|
1533 |
+
value: 33.98
|
1534 |
- type: precision_at_1
|
1535 |
+
value: 20.43
|
1536 |
- type: precision_at_10
|
1537 |
+
value: 6.027
|
1538 |
- type: precision_at_100
|
1539 |
+
value: 0.9119999999999999
|
1540 |
- type: precision_at_1000
|
1541 |
value: 0.10300000000000001
|
1542 |
- type: precision_at_3
|
1543 |
+
value: 12.985
|
1544 |
- type: precision_at_5
|
1545 |
+
value: 9.593
|
1546 |
- type: recall_at_1
|
1547 |
+
value: 19.834
|
1548 |
- type: recall_at_10
|
1549 |
+
value: 57.647000000000006
|
1550 |
- type: recall_at_100
|
1551 |
+
value: 86.276
|
1552 |
- type: recall_at_1000
|
1553 |
+
value: 97.065
|
1554 |
- type: recall_at_3
|
1555 |
+
value: 37.616
|
1556 |
- type: recall_at_5
|
1557 |
+
value: 46.171
|
1558 |
- task:
|
1559 |
type: Classification
|
1560 |
dataset:
|
|
|
1565 |
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1566 |
metrics:
|
1567 |
- type: accuracy
|
1568 |
+
value: 91.52530779753762
|
1569 |
- type: f1
|
1570 |
+
value: 91.4004687820246
|
1571 |
- task:
|
1572 |
type: Classification
|
1573 |
dataset:
|
|
|
1578 |
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1579 |
metrics:
|
1580 |
- type: accuracy
|
1581 |
+
value: 72.82717738258093
|
1582 |
- type: f1
|
1583 |
+
value: 56.791387113030346
|
1584 |
- task:
|
1585 |
type: Classification
|
1586 |
dataset:
|
|
|
1591 |
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1592 |
metrics:
|
1593 |
- type: accuracy
|
1594 |
+
value: 71.09280430396772
|
1595 |
- type: f1
|
1596 |
+
value: 68.92843467363518
|
1597 |
- task:
|
1598 |
type: Classification
|
1599 |
dataset:
|
|
|
1604 |
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1605 |
metrics:
|
1606 |
- type: accuracy
|
1607 |
+
value: 76.2542030934768
|
1608 |
- type: f1
|
1609 |
+
value: 76.22211319699834
|
1610 |
- task:
|
1611 |
type: Clustering
|
1612 |
dataset:
|
|
|
1617 |
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1618 |
metrics:
|
1619 |
- type: v_measure
|
1620 |
+
value: 29.604407852989457
|
1621 |
- task:
|
1622 |
type: Clustering
|
1623 |
dataset:
|
|
|
1628 |
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1629 |
metrics:
|
1630 |
- type: v_measure
|
1631 |
+
value: 25.011863718751183
|
1632 |
- task:
|
1633 |
type: Reranking
|
1634 |
dataset:
|
|
|
1639 |
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1640 |
metrics:
|
1641 |
- type: map
|
1642 |
+
value: 31.55552172383111
|
1643 |
- type: mrr
|
1644 |
+
value: 32.65475731770242
|
1645 |
- task:
|
1646 |
type: Retrieval
|
1647 |
dataset:
|
|
|
1652 |
revision: None
|
1653 |
metrics:
|
1654 |
- type: map_at_1
|
1655 |
+
value: 4.968
|
1656 |
- type: map_at_10
|
1657 |
+
value: 10.703999999999999
|
1658 |
- type: map_at_100
|
1659 |
+
value: 13.316
|
1660 |
- type: map_at_1000
|
1661 |
+
value: 14.674000000000001
|
1662 |
- type: map_at_3
|
1663 |
+
value: 7.809000000000001
|
1664 |
- type: map_at_5
|
1665 |
+
value: 9.268
|
1666 |
- type: mrr_at_1
|
1667 |
+
value: 41.796
|
1668 |
- type: mrr_at_10
|
1669 |
+
value: 50.558
|
1670 |
- type: mrr_at_100
|
1671 |
+
value: 51.125
|
1672 |
- type: mrr_at_1000
|
1673 |
+
value: 51.184
|
1674 |
- type: mrr_at_3
|
1675 |
+
value: 48.349
|
1676 |
- type: mrr_at_5
|
1677 |
+
value: 49.572
|
1678 |
- type: ndcg_at_1
|
1679 |
+
value: 39.783
|
1680 |
- type: ndcg_at_10
|
1681 |
+
value: 30.375999999999998
|
1682 |
- type: ndcg_at_100
|
1683 |
+
value: 27.648
|
1684 |
- type: ndcg_at_1000
|
1685 |
+
value: 36.711
|
1686 |
- type: ndcg_at_3
|
1687 |
+
value: 35.053
|
1688 |
- type: ndcg_at_5
|
1689 |
+
value: 33.278999999999996
|
1690 |
- type: precision_at_1
|
1691 |
+
value: 41.796
|
1692 |
- type: precision_at_10
|
1693 |
+
value: 22.663
|
1694 |
- type: precision_at_100
|
1695 |
+
value: 7.210999999999999
|
1696 |
- type: precision_at_1000
|
1697 |
+
value: 1.984
|
1698 |
- type: precision_at_3
|
1699 |
+
value: 33.127
|
1700 |
- type: precision_at_5
|
1701 |
+
value: 29.102
|
1702 |
- type: recall_at_1
|
1703 |
+
value: 4.968
|
1704 |
- type: recall_at_10
|
1705 |
+
value: 14.469999999999999
|
1706 |
- type: recall_at_100
|
1707 |
+
value: 28.188000000000002
|
1708 |
- type: recall_at_1000
|
1709 |
+
value: 60.769
|
1710 |
- type: recall_at_3
|
1711 |
+
value: 8.737
|
1712 |
- type: recall_at_5
|
1713 |
+
value: 11.539000000000001
|
1714 |
- task:
|
1715 |
type: Retrieval
|
1716 |
dataset:
|
|
|
1721 |
revision: None
|
1722 |
metrics:
|
1723 |
- type: map_at_1
|
1724 |
+
value: 26.958
|
1725 |
- type: map_at_10
|
1726 |
+
value: 40.6
|
1727 |
- type: map_at_100
|
1728 |
+
value: 41.754000000000005
|
1729 |
- type: map_at_1000
|
1730 |
+
value: 41.792
|
1731 |
- type: map_at_3
|
1732 |
+
value: 36.521
|
1733 |
- type: map_at_5
|
1734 |
+
value: 38.866
|
1735 |
- type: mrr_at_1
|
1736 |
+
value: 30.330000000000002
|
1737 |
- type: mrr_at_10
|
1738 |
+
value: 43.013
|
1739 |
- type: mrr_at_100
|
1740 |
+
value: 43.89
|
1741 |
- type: mrr_at_1000
|
1742 |
+
value: 43.917
|
1743 |
- type: mrr_at_3
|
1744 |
+
value: 39.489000000000004
|
1745 |
- type: mrr_at_5
|
1746 |
+
value: 41.504999999999995
|
1747 |
- type: ndcg_at_1
|
1748 |
+
value: 30.330000000000002
|
1749 |
- type: ndcg_at_10
|
1750 |
+
value: 47.878
|
1751 |
- type: ndcg_at_100
|
1752 |
+
value: 52.761
|
1753 |
- type: ndcg_at_1000
|
1754 |
+
value: 53.69500000000001
|
1755 |
- type: ndcg_at_3
|
1756 |
+
value: 40.061
|
1757 |
- type: ndcg_at_5
|
1758 |
+
value: 43.980000000000004
|
1759 |
- type: precision_at_1
|
1760 |
+
value: 30.330000000000002
|
1761 |
- type: precision_at_10
|
1762 |
+
value: 8.048
|
1763 |
- type: precision_at_100
|
1764 |
+
value: 1.076
|
1765 |
- type: precision_at_1000
|
1766 |
value: 0.117
|
1767 |
- type: precision_at_3
|
1768 |
+
value: 18.299000000000003
|
1769 |
- type: precision_at_5
|
1770 |
+
value: 13.25
|
1771 |
- type: recall_at_1
|
1772 |
+
value: 26.958
|
1773 |
- type: recall_at_10
|
1774 |
+
value: 67.72399999999999
|
1775 |
- type: recall_at_100
|
1776 |
+
value: 89.02600000000001
|
1777 |
- type: recall_at_1000
|
1778 |
+
value: 96.029
|
1779 |
- type: recall_at_3
|
1780 |
+
value: 47.332
|
1781 |
- type: recall_at_5
|
1782 |
+
value: 56.36600000000001
|
1783 |
- task:
|
1784 |
type: Retrieval
|
1785 |
dataset:
|
|
|
1790 |
revision: None
|
1791 |
metrics:
|
1792 |
- type: map_at_1
|
1793 |
+
value: 69.926
|
1794 |
- type: map_at_10
|
1795 |
+
value: 83.797
|
1796 |
- type: map_at_100
|
1797 |
+
value: 84.42699999999999
|
1798 |
- type: map_at_1000
|
1799 |
+
value: 84.446
|
1800 |
- type: map_at_3
|
1801 |
+
value: 80.78
|
1802 |
- type: map_at_5
|
1803 |
+
value: 82.669
|
1804 |
- type: mrr_at_1
|
1805 |
+
value: 80.44
|
1806 |
- type: mrr_at_10
|
1807 |
+
value: 86.79
|
1808 |
- type: mrr_at_100
|
1809 |
+
value: 86.90299999999999
|
1810 |
- type: mrr_at_1000
|
1811 |
+
value: 86.904
|
1812 |
- type: mrr_at_3
|
1813 |
+
value: 85.753
|
1814 |
- type: mrr_at_5
|
1815 |
+
value: 86.478
|
1816 |
- type: ndcg_at_1
|
1817 |
+
value: 80.44
|
1818 |
- type: ndcg_at_10
|
1819 |
+
value: 87.634
|
1820 |
- type: ndcg_at_100
|
1821 |
+
value: 88.9
|
1822 |
- type: ndcg_at_1000
|
1823 |
+
value: 89.03
|
1824 |
- type: ndcg_at_3
|
1825 |
+
value: 84.622
|
1826 |
- type: ndcg_at_5
|
1827 |
+
value: 86.29
|
1828 |
- type: precision_at_1
|
1829 |
+
value: 80.44
|
1830 |
- type: precision_at_10
|
1831 |
+
value: 13.305
|
1832 |
- type: precision_at_100
|
1833 |
+
value: 1.524
|
1834 |
- type: precision_at_1000
|
1835 |
value: 0.157
|
1836 |
- type: precision_at_3
|
1837 |
+
value: 36.957
|
1838 |
- type: precision_at_5
|
1839 |
+
value: 24.328
|
1840 |
- type: recall_at_1
|
1841 |
+
value: 69.926
|
1842 |
- type: recall_at_10
|
1843 |
+
value: 94.99300000000001
|
1844 |
- type: recall_at_100
|
1845 |
+
value: 99.345
|
1846 |
- type: recall_at_1000
|
1847 |
+
value: 99.97
|
1848 |
- type: recall_at_3
|
1849 |
+
value: 86.465
|
1850 |
- type: recall_at_5
|
1851 |
+
value: 91.121
|
1852 |
- task:
|
1853 |
type: Clustering
|
1854 |
dataset:
|
|
|
1859 |
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1860 |
metrics:
|
1861 |
- type: v_measure
|
1862 |
+
value: 42.850644235471144
|
1863 |
- task:
|
1864 |
type: Clustering
|
1865 |
dataset:
|
|
|
1870 |
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1871 |
metrics:
|
1872 |
- type: v_measure
|
1873 |
+
value: 52.547875398320734
|
1874 |
- task:
|
1875 |
type: Retrieval
|
1876 |
dataset:
|
|
|
1881 |
revision: None
|
1882 |
metrics:
|
1883 |
- type: map_at_1
|
1884 |
+
value: 4.328
|
1885 |
- type: map_at_10
|
1886 |
+
value: 10.479
|
1887 |
- type: map_at_100
|
1888 |
+
value: 12.25
|
1889 |
- type: map_at_1000
|
1890 |
+
value: 12.522
|
1891 |
- type: map_at_3
|
1892 |
+
value: 7.548000000000001
|
1893 |
- type: map_at_5
|
1894 |
+
value: 9.039
|
1895 |
- type: mrr_at_1
|
1896 |
+
value: 21.3
|
1897 |
- type: mrr_at_10
|
1898 |
+
value: 30.678
|
1899 |
- type: mrr_at_100
|
1900 |
+
value: 31.77
|
1901 |
- type: mrr_at_1000
|
1902 |
+
value: 31.831
|
1903 |
- type: mrr_at_3
|
1904 |
+
value: 27.500000000000004
|
1905 |
- type: mrr_at_5
|
1906 |
+
value: 29.375
|
1907 |
- type: ndcg_at_1
|
1908 |
+
value: 21.3
|
1909 |
- type: ndcg_at_10
|
1910 |
+
value: 17.626
|
1911 |
- type: ndcg_at_100
|
1912 |
+
value: 25.03
|
1913 |
- type: ndcg_at_1000
|
1914 |
+
value: 30.055
|
1915 |
- type: ndcg_at_3
|
1916 |
+
value: 16.744999999999997
|
1917 |
- type: ndcg_at_5
|
1918 |
+
value: 14.729999999999999
|
1919 |
- type: precision_at_1
|
1920 |
+
value: 21.3
|
1921 |
- type: precision_at_10
|
1922 |
+
value: 9.09
|
1923 |
- type: precision_at_100
|
1924 |
+
value: 1.989
|
1925 |
- type: precision_at_1000
|
1926 |
+
value: 0.32
|
1927 |
- type: precision_at_3
|
1928 |
+
value: 15.467
|
1929 |
- type: precision_at_5
|
1930 |
+
value: 12.879999999999999
|
1931 |
- type: recall_at_1
|
1932 |
+
value: 4.328
|
1933 |
- type: recall_at_10
|
1934 |
+
value: 18.412
|
1935 |
- type: recall_at_100
|
1936 |
+
value: 40.363
|
1937 |
- type: recall_at_1000
|
1938 |
+
value: 64.997
|
1939 |
- type: recall_at_3
|
1940 |
+
value: 9.408
|
1941 |
- type: recall_at_5
|
1942 |
+
value: 13.048000000000002
|
1943 |
- task:
|
1944 |
type: STS
|
1945 |
dataset:
|
|
|
1950 |
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1951 |
metrics:
|
1952 |
- type: cos_sim_pearson
|
1953 |
+
value: 84.1338589503896
|
1954 |
- type: cos_sim_spearman
|
1955 |
+
value: 79.1378154534123
|
1956 |
- type: euclidean_pearson
|
1957 |
+
value: 73.17857462509251
|
1958 |
- type: euclidean_spearman
|
1959 |
+
value: 70.79268955610539
|
1960 |
- type: manhattan_pearson
|
1961 |
+
value: 72.8280251705823
|
1962 |
- type: manhattan_spearman
|
1963 |
+
value: 70.60323787229834
|
1964 |
- task:
|
1965 |
type: STS
|
1966 |
dataset:
|
|
|
1971 |
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1972 |
metrics:
|
1973 |
- type: cos_sim_pearson
|
1974 |
+
value: 84.21604641858598
|
1975 |
- type: cos_sim_spearman
|
1976 |
+
value: 75.06080146054282
|
1977 |
- type: euclidean_pearson
|
1978 |
+
value: 69.44429285856924
|
1979 |
- type: euclidean_spearman
|
1980 |
+
value: 58.240130690046456
|
1981 |
- type: manhattan_pearson
|
1982 |
+
value: 69.07597314234852
|
1983 |
- type: manhattan_spearman
|
1984 |
+
value: 58.08224335836159
|
1985 |
- task:
|
1986 |
type: STS
|
1987 |
dataset:
|
|
|
1992 |
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1993 |
metrics:
|
1994 |
- type: cos_sim_pearson
|
1995 |
+
value: 80.2252849321165
|
1996 |
- type: cos_sim_spearman
|
1997 |
+
value: 80.85907200101076
|
1998 |
- type: euclidean_pearson
|
1999 |
+
value: 70.85619832878055
|
2000 |
- type: euclidean_spearman
|
2001 |
+
value: 71.59417341887324
|
2002 |
- type: manhattan_pearson
|
2003 |
+
value: 70.55842192345895
|
2004 |
- type: manhattan_spearman
|
2005 |
+
value: 71.30332994715893
|
2006 |
- task:
|
2007 |
type: STS
|
2008 |
dataset:
|
|
|
2013 |
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2014 |
metrics:
|
2015 |
- type: cos_sim_pearson
|
2016 |
+
value: 80.50469360654135
|
2017 |
- type: cos_sim_spearman
|
2018 |
+
value: 76.12917164308409
|
2019 |
- type: euclidean_pearson
|
2020 |
+
value: 70.4070213910491
|
2021 |
- type: euclidean_spearman
|
2022 |
+
value: 66.97320451942113
|
2023 |
- type: manhattan_pearson
|
2024 |
+
value: 70.24834290119863
|
2025 |
- type: manhattan_spearman
|
2026 |
+
value: 66.9047074173091
|
2027 |
- task:
|
2028 |
type: STS
|
2029 |
dataset:
|
|
|
2034 |
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2035 |
metrics:
|
2036 |
- type: cos_sim_pearson
|
2037 |
+
value: 84.70140350059746
|
2038 |
- type: cos_sim_spearman
|
2039 |
+
value: 85.55427877110485
|
2040 |
- type: euclidean_pearson
|
2041 |
+
value: 63.4780453371435
|
2042 |
- type: euclidean_spearman
|
2043 |
+
value: 64.65485395077273
|
2044 |
- type: manhattan_pearson
|
2045 |
+
value: 63.64869846572011
|
2046 |
- type: manhattan_spearman
|
2047 |
+
value: 64.87219311596813
|
2048 |
- task:
|
2049 |
type: STS
|
2050 |
dataset:
|
|
|
2055 |
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2056 |
metrics:
|
2057 |
- type: cos_sim_pearson
|
2058 |
+
value: 79.4416477676503
|
2059 |
- type: cos_sim_spearman
|
2060 |
+
value: 81.2094925260351
|
2061 |
- type: euclidean_pearson
|
2062 |
+
value: 68.372257553367
|
2063 |
- type: euclidean_spearman
|
2064 |
+
value: 69.47792807911692
|
2065 |
- type: manhattan_pearson
|
2066 |
+
value: 68.17773583183664
|
2067 |
- type: manhattan_spearman
|
2068 |
+
value: 69.31505452732998
|
2069 |
- task:
|
2070 |
type: STS
|
2071 |
dataset:
|
|
|
2076 |
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2077 |
metrics:
|
2078 |
- type: cos_sim_pearson
|
2079 |
+
value: 88.94688403351994
|
2080 |
- type: cos_sim_spearman
|
2081 |
+
value: 88.97626967707933
|
2082 |
- type: euclidean_pearson
|
2083 |
+
value: 74.09942728422159
|
2084 |
- type: euclidean_spearman
|
2085 |
+
value: 72.91022362666948
|
2086 |
- type: manhattan_pearson
|
2087 |
+
value: 74.11262432880199
|
2088 |
- type: manhattan_spearman
|
2089 |
+
value: 72.82115894578564
|
2090 |
- task:
|
2091 |
type: STS
|
2092 |
dataset:
|
|
|
2097 |
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2098 |
metrics:
|
2099 |
- type: cos_sim_pearson
|
2100 |
+
value: 67.42605802805606
|
2101 |
- type: cos_sim_spearman
|
2102 |
+
value: 66.22330559222408
|
2103 |
- type: euclidean_pearson
|
2104 |
+
value: 50.15272876367891
|
2105 |
- type: euclidean_spearman
|
2106 |
+
value: 60.695400782452715
|
2107 |
- type: manhattan_pearson
|
2108 |
+
value: 50.17076569264417
|
2109 |
- type: manhattan_spearman
|
2110 |
+
value: 60.3761281869747
|
2111 |
- task:
|
2112 |
type: STS
|
2113 |
dataset:
|
|
|
2118 |
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2119 |
metrics:
|
2120 |
- type: cos_sim_pearson
|
2121 |
+
value: 82.85939227596093
|
2122 |
- type: cos_sim_spearman
|
2123 |
+
value: 82.57071649593358
|
2124 |
- type: euclidean_pearson
|
2125 |
+
value: 72.18291316100125
|
2126 |
- type: euclidean_spearman
|
2127 |
+
value: 70.70702024402348
|
2128 |
- type: manhattan_pearson
|
2129 |
+
value: 72.36789718833687
|
2130 |
- type: manhattan_spearman
|
2131 |
+
value: 70.92789721402387
|
2132 |
- task:
|
2133 |
type: Reranking
|
2134 |
dataset:
|
|
|
2139 |
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2140 |
metrics:
|
2141 |
- type: map
|
2142 |
+
value: 79.31107201598611
|
2143 |
- type: mrr
|
2144 |
+
value: 93.66321314850727
|
2145 |
- task:
|
2146 |
type: Retrieval
|
2147 |
dataset:
|
|
|
2152 |
revision: None
|
2153 |
metrics:
|
2154 |
- type: map_at_1
|
2155 |
+
value: 45.428000000000004
|
2156 |
- type: map_at_10
|
2157 |
+
value: 54.730000000000004
|
2158 |
- type: map_at_100
|
2159 |
+
value: 55.421
|
2160 |
- type: map_at_1000
|
2161 |
+
value: 55.47299999999999
|
2162 |
- type: map_at_3
|
2163 |
+
value: 52.333
|
2164 |
- type: map_at_5
|
2165 |
+
value: 53.72
|
2166 |
- type: mrr_at_1
|
2167 |
+
value: 48.333
|
2168 |
- type: mrr_at_10
|
2169 |
+
value: 56.601
|
2170 |
- type: mrr_at_100
|
2171 |
+
value: 57.106
|
2172 |
- type: mrr_at_1000
|
2173 |
+
value: 57.154
|
2174 |
- type: mrr_at_3
|
2175 |
+
value: 54.611
|
2176 |
- type: mrr_at_5
|
2177 |
+
value: 55.87800000000001
|
2178 |
- type: ndcg_at_1
|
2179 |
+
value: 48.333
|
2180 |
- type: ndcg_at_10
|
2181 |
+
value: 59.394999999999996
|
2182 |
- type: ndcg_at_100
|
2183 |
+
value: 62.549
|
2184 |
- type: ndcg_at_1000
|
2185 |
+
value: 63.941
|
2186 |
- type: ndcg_at_3
|
2187 |
+
value: 55.096000000000004
|
2188 |
- type: ndcg_at_5
|
2189 |
+
value: 57.325
|
2190 |
- type: precision_at_1
|
2191 |
+
value: 48.333
|
2192 |
- type: precision_at_10
|
2193 |
+
value: 8.1
|
2194 |
- type: precision_at_100
|
2195 |
+
value: 0.983
|
2196 |
- type: precision_at_1000
|
2197 |
value: 0.11
|
2198 |
- type: precision_at_3
|
2199 |
+
value: 21.889
|
2200 |
- type: precision_at_5
|
2201 |
+
value: 14.533
|
2202 |
- type: recall_at_1
|
2203 |
+
value: 45.428000000000004
|
2204 |
- type: recall_at_10
|
2205 |
+
value: 71.806
|
2206 |
- type: recall_at_100
|
2207 |
+
value: 86.533
|
2208 |
- type: recall_at_1000
|
2209 |
value: 97.5
|
2210 |
- type: recall_at_3
|
2211 |
+
value: 60.228
|
2212 |
- type: recall_at_5
|
2213 |
+
value: 65.90599999999999
|
2214 |
- task:
|
2215 |
type: PairClassification
|
2216 |
dataset:
|
|
|
2221 |
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2222 |
metrics:
|
2223 |
- type: cos_sim_accuracy
|
2224 |
+
value: 99.8029702970297
|
2225 |
- type: cos_sim_ap
|
2226 |
+
value: 95.48085242816634
|
2227 |
- type: cos_sim_f1
|
2228 |
+
value: 89.86653484923382
|
2229 |
- type: cos_sim_precision
|
2230 |
+
value: 88.85630498533725
|
2231 |
- type: cos_sim_recall
|
2232 |
+
value: 90.9
|
2233 |
- type: dot_accuracy
|
2234 |
+
value: 99.21881188118812
|
2235 |
- type: dot_ap
|
2236 |
+
value: 55.14126603018576
|
2237 |
- type: dot_f1
|
2238 |
+
value: 55.22458628841608
|
2239 |
- type: dot_precision
|
2240 |
+
value: 52.37668161434977
|
2241 |
- type: dot_recall
|
2242 |
+
value: 58.4
|
2243 |
- type: euclidean_accuracy
|
2244 |
+
value: 99.64356435643565
|
2245 |
- type: euclidean_ap
|
2246 |
+
value: 84.52487064474103
|
2247 |
- type: euclidean_f1
|
2248 |
+
value: 80.53908355795149
|
2249 |
- type: euclidean_precision
|
2250 |
+
value: 87.36842105263159
|
2251 |
- type: euclidean_recall
|
2252 |
+
value: 74.7
|
2253 |
- type: manhattan_accuracy
|
2254 |
+
value: 99.63861386138613
|
2255 |
- type: manhattan_ap
|
2256 |
+
value: 84.1994288662172
|
2257 |
- type: manhattan_f1
|
2258 |
+
value: 80.38482095136291
|
2259 |
- type: manhattan_precision
|
2260 |
+
value: 86.33754305396096
|
2261 |
- type: manhattan_recall
|
2262 |
+
value: 75.2
|
2263 |
- type: max_accuracy
|
2264 |
+
value: 99.8029702970297
|
2265 |
- type: max_ap
|
2266 |
+
value: 95.48085242816634
|
2267 |
- type: max_f1
|
2268 |
+
value: 89.86653484923382
|
2269 |
- task:
|
2270 |
type: Clustering
|
2271 |
dataset:
|
|
|
2276 |
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2277 |
metrics:
|
2278 |
- type: v_measure
|
2279 |
+
value: 48.06508273111389
|
2280 |
- task:
|
2281 |
type: Clustering
|
2282 |
dataset:
|
|
|
2287 |
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2288 |
metrics:
|
2289 |
- type: v_measure
|
2290 |
+
value: 31.36169910951664
|
2291 |
- task:
|
2292 |
type: Reranking
|
2293 |
dataset:
|
|
|
2298 |
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2299 |
metrics:
|
2300 |
- type: map
|
2301 |
+
value: 50.110601218420356
|
2302 |
- type: mrr
|
2303 |
+
value: 50.90277777777777
|
2304 |
- task:
|
2305 |
type: Summarization
|
2306 |
dataset:
|
|
|
2311 |
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2312 |
metrics:
|
2313 |
- type: cos_sim_pearson
|
2314 |
+
value: 29.63669555287747
|
2315 |
- type: cos_sim_spearman
|
2316 |
+
value: 30.708042454053853
|
2317 |
- type: dot_pearson
|
2318 |
+
value: 20.309025749838924
|
2319 |
- type: dot_spearman
|
2320 |
+
value: 21.511758746817165
|
2321 |
- task:
|
2322 |
type: Retrieval
|
2323 |
dataset:
|
|
|
2328 |
revision: None
|
2329 |
metrics:
|
2330 |
- type: map_at_1
|
2331 |
+
value: 0.201
|
2332 |
- type: map_at_10
|
2333 |
+
value: 1.405
|
2334 |
- type: map_at_100
|
2335 |
+
value: 7.359999999999999
|
2336 |
- type: map_at_1000
|
2337 |
+
value: 17.858
|
2338 |
- type: map_at_3
|
2339 |
+
value: 0.494
|
2340 |
- type: map_at_5
|
2341 |
+
value: 0.757
|
2342 |
- type: mrr_at_1
|
2343 |
+
value: 74.0
|
2344 |
- type: mrr_at_10
|
2345 |
+
value: 84.89999999999999
|
2346 |
- type: mrr_at_100
|
2347 |
+
value: 84.89999999999999
|
2348 |
- type: mrr_at_1000
|
2349 |
+
value: 84.89999999999999
|
2350 |
- type: mrr_at_3
|
2351 |
+
value: 84.0
|
2352 |
- type: mrr_at_5
|
2353 |
+
value: 84.89999999999999
|
2354 |
- type: ndcg_at_1
|
2355 |
+
value: 68.0
|
2356 |
- type: ndcg_at_10
|
2357 |
+
value: 60.571
|
2358 |
- type: ndcg_at_100
|
2359 |
+
value: 46.016
|
2360 |
- type: ndcg_at_1000
|
2361 |
+
value: 41.277
|
2362 |
- type: ndcg_at_3
|
2363 |
+
value: 63.989
|
2364 |
- type: ndcg_at_5
|
2365 |
+
value: 61.41
|
2366 |
- type: precision_at_1
|
2367 |
+
value: 74.0
|
2368 |
- type: precision_at_10
|
2369 |
+
value: 65.2
|
2370 |
- type: precision_at_100
|
2371 |
+
value: 47.04
|
2372 |
- type: precision_at_1000
|
2373 |
+
value: 18.416
|
2374 |
- type: precision_at_3
|
2375 |
+
value: 68.0
|
2376 |
- type: precision_at_5
|
2377 |
+
value: 66.4
|
2378 |
- type: recall_at_1
|
2379 |
+
value: 0.201
|
2380 |
- type: recall_at_10
|
2381 |
+
value: 1.763
|
2382 |
- type: recall_at_100
|
2383 |
+
value: 11.008999999999999
|
2384 |
- type: recall_at_1000
|
2385 |
+
value: 38.509
|
2386 |
- type: recall_at_3
|
2387 |
+
value: 0.551
|
2388 |
- type: recall_at_5
|
2389 |
+
value: 0.881
|
2390 |
- task:
|
2391 |
type: Retrieval
|
2392 |
dataset:
|
|
|
2397 |
revision: None
|
2398 |
metrics:
|
2399 |
- type: map_at_1
|
2400 |
+
value: 1.4040000000000001
|
2401 |
- type: map_at_10
|
2402 |
+
value: 7.847999999999999
|
2403 |
- type: map_at_100
|
2404 |
+
value: 12.908
|
2405 |
- type: map_at_1000
|
2406 |
+
value: 14.37
|
2407 |
- type: map_at_3
|
2408 |
+
value: 3.6450000000000005
|
2409 |
- type: map_at_5
|
2410 |
+
value: 4.93
|
2411 |
- type: mrr_at_1
|
2412 |
+
value: 18.367
|
2413 |
- type: mrr_at_10
|
2414 |
+
value: 32.576
|
2415 |
- type: mrr_at_100
|
2416 |
+
value: 34.163
|
2417 |
- type: mrr_at_1000
|
2418 |
+
value: 34.18
|
2419 |
- type: mrr_at_3
|
2420 |
+
value: 28.571
|
2421 |
- type: mrr_at_5
|
2422 |
+
value: 30.918
|
2423 |
- type: ndcg_at_1
|
2424 |
+
value: 15.306000000000001
|
2425 |
- type: ndcg_at_10
|
2426 |
+
value: 18.59
|
2427 |
- type: ndcg_at_100
|
2428 |
+
value: 30.394
|
2429 |
- type: ndcg_at_1000
|
2430 |
+
value: 42.198
|
2431 |
- type: ndcg_at_3
|
2432 |
+
value: 18.099
|
2433 |
- type: ndcg_at_5
|
2434 |
+
value: 16.955000000000002
|
2435 |
- type: precision_at_1
|
2436 |
+
value: 16.326999999999998
|
2437 |
- type: precision_at_10
|
2438 |
+
value: 17.959
|
2439 |
- type: precision_at_100
|
2440 |
+
value: 6.755
|
2441 |
- type: precision_at_1000
|
2442 |
+
value: 1.4529999999999998
|
2443 |
- type: precision_at_3
|
2444 |
value: 20.408
|
2445 |
- type: precision_at_5
|
2446 |
+
value: 18.367
|
2447 |
- type: recall_at_1
|
2448 |
+
value: 1.4040000000000001
|
2449 |
- type: recall_at_10
|
2450 |
+
value: 14.048
|
2451 |
- type: recall_at_100
|
2452 |
+
value: 42.150999999999996
|
2453 |
- type: recall_at_1000
|
2454 |
+
value: 77.85600000000001
|
2455 |
- type: recall_at_3
|
2456 |
+
value: 4.819
|
2457 |
- type: recall_at_5
|
2458 |
+
value: 7.13
|
2459 |
- task:
|
2460 |
type: Classification
|
2461 |
dataset:
|
|
|
2466 |
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2467 |
metrics:
|
2468 |
- type: accuracy
|
2469 |
+
value: 66.1456
|
2470 |
- type: ap
|
2471 |
+
value: 11.631023858569064
|
2472 |
- type: f1
|
2473 |
+
value: 50.128196455722254
|
2474 |
- task:
|
2475 |
type: Classification
|
2476 |
dataset:
|
|
|
2481 |
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2482 |
metrics:
|
2483 |
- type: accuracy
|
2484 |
+
value: 56.850594227504246
|
2485 |
- type: f1
|
2486 |
+
value: 56.82313689360827
|
2487 |
- task:
|
2488 |
type: Clustering
|
2489 |
dataset:
|
|
|
2494 |
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2495 |
metrics:
|
2496 |
- type: v_measure
|
2497 |
+
value: 38.060423744064764
|
2498 |
- task:
|
2499 |
type: PairClassification
|
2500 |
dataset:
|
|
|
2505 |
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2506 |
metrics:
|
2507 |
- type: cos_sim_accuracy
|
2508 |
+
value: 84.43702688204088
|
2509 |
- type: cos_sim_ap
|
2510 |
+
value: 68.30176948820142
|
2511 |
- type: cos_sim_f1
|
2512 |
+
value: 64.25430330443524
|
2513 |
- type: cos_sim_precision
|
2514 |
+
value: 61.33365315423362
|
2515 |
- type: cos_sim_recall
|
2516 |
+
value: 67.46701846965699
|
2517 |
- type: dot_accuracy
|
2518 |
+
value: 77.76718126005842
|
2519 |
- type: dot_ap
|
2520 |
+
value: 37.510516716176305
|
2521 |
- type: dot_f1
|
2522 |
+
value: 43.53859496964441
|
2523 |
- type: dot_precision
|
2524 |
+
value: 32.428940568475454
|
2525 |
- type: dot_recall
|
2526 |
+
value: 66.2269129287599
|
2527 |
- type: euclidean_accuracy
|
2528 |
+
value: 82.10049472492102
|
2529 |
- type: euclidean_ap
|
2530 |
+
value: 61.64354520687271
|
2531 |
- type: euclidean_f1
|
2532 |
+
value: 59.804144841721694
|
2533 |
- type: euclidean_precision
|
2534 |
+
value: 52.604166666666664
|
2535 |
- type: euclidean_recall
|
2536 |
+
value: 69.28759894459104
|
2537 |
- type: manhattan_accuracy
|
2538 |
+
value: 82.22566609048101
|
2539 |
- type: manhattan_ap
|
2540 |
+
value: 61.753431124879974
|
2541 |
- type: manhattan_f1
|
2542 |
+
value: 59.77735297424941
|
2543 |
- type: manhattan_precision
|
2544 |
+
value: 52.0870076425632
|
2545 |
- type: manhattan_recall
|
2546 |
+
value: 70.13192612137203
|
2547 |
- type: max_accuracy
|
2548 |
+
value: 84.43702688204088
|
2549 |
- type: max_ap
|
2550 |
+
value: 68.30176948820142
|
2551 |
- type: max_f1
|
2552 |
+
value: 64.25430330443524
|
2553 |
- task:
|
2554 |
type: PairClassification
|
2555 |
dataset:
|
|
|
2560 |
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2561 |
metrics:
|
2562 |
- type: cos_sim_accuracy
|
2563 |
+
value: 88.81515116233942
|
2564 |
- type: cos_sim_ap
|
2565 |
+
value: 85.33305785100573
|
2566 |
- type: cos_sim_f1
|
2567 |
+
value: 78.11202938475667
|
2568 |
- type: cos_sim_precision
|
2569 |
+
value: 74.68567816253424
|
2570 |
- type: cos_sim_recall
|
2571 |
+
value: 81.86787804126887
|
2572 |
- type: dot_accuracy
|
2573 |
+
value: 82.50475414289595
|
2574 |
- type: dot_ap
|
2575 |
+
value: 69.87015340174045
|
2576 |
- type: dot_f1
|
2577 |
+
value: 65.94174480373633
|
2578 |
- type: dot_precision
|
2579 |
+
value: 61.40362525728703
|
2580 |
- type: dot_recall
|
2581 |
+
value: 71.20418848167539
|
2582 |
- type: euclidean_accuracy
|
2583 |
+
value: 83.05778709201692
|
2584 |
- type: euclidean_ap
|
2585 |
+
value: 70.54206653977498
|
2586 |
- type: euclidean_f1
|
2587 |
+
value: 62.98969847356943
|
2588 |
- type: euclidean_precision
|
2589 |
+
value: 61.55033063923585
|
2590 |
- type: euclidean_recall
|
2591 |
+
value: 64.49799815214044
|
2592 |
- type: manhattan_accuracy
|
2593 |
+
value: 83.0034540303489
|
2594 |
- type: manhattan_ap
|
2595 |
+
value: 70.53997987198404
|
2596 |
- type: manhattan_f1
|
2597 |
+
value: 62.95875898600075
|
2598 |
- type: manhattan_precision
|
2599 |
+
value: 61.89555125725339
|
2600 |
- type: manhattan_recall
|
2601 |
+
value: 64.05913150600554
|
2602 |
- type: max_accuracy
|
2603 |
+
value: 88.81515116233942
|
2604 |
- type: max_ap
|
2605 |
+
value: 85.33305785100573
|
2606 |
- type: max_f1
|
2607 |
+
value: 78.11202938475667
|
2608 |
---
|
2609 |
---
|
2610 |
|
|
|
2665 |
|all-minilm-l6-v2|0.724|0.806|0.756|0.854|0.79 |0.876|0.473 |0.876|0.645 |
|
2666 |
|all-mpnet-base-v2|0.726|0.835|**0.78** |0.857|0.8 |**0.906**|0.513 |0.875|0.656 |
|
2667 |
|ada-embedding-002|0.698|0.833|0.761|0.861|**0.86** |0.903|**0.685** |0.876|**0.726** |
|
2668 |
+
|jina-embedding-t-en-v1|0.717|0.773|0.731|0.829|0.777|0.860|0.482 |0.840|0.522 |
|
2669 |
+
|jina-embedding-s-en-v1|0.743|0.786|0.738|0.837|0.80|0.875|0.523 |0.857|0.524 |
|
2670 |
+
|jina-embedding-b-en-v1|**0.751**|0.809|0.761|0.856|0.812|0.890|0.606 |0.876|0.594 |
|
2671 |
|jina-embedding-l-en-v1|0.739|**0.844**|0.778|**0.863**|0.821|0.896|0.566 |**0.882**|0.608 |
|
2672 |
|
2673 |
## Usage
|
|
|
2719 |
|
2720 |
``` latex
|
2721 |
@misc{günther2023jina,
|
2722 |
+
title={Jina Embeddings: A Novel Set of High-Performance Sentence Embedding Models},
|
2723 |
author={Michael Günther and Louis Milliken and Jonathan Geuter and Georgios Mastrapas and Bo Wang and Han Xiao},
|
2724 |
year={2023},
|
2725 |
eprint={2307.11224},
|
2726 |
archivePrefix={arXiv},
|
2727 |
primaryClass={cs.CL}
|
2728 |
}
|
2729 |
+
```
|