|
import re |
|
from typing import Dict, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from transformers import AutoConfig, AutoModel, PretrainedConfig |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPooling, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
) |
|
|
|
""" |
|
HF architecture mapping |
|
""" |
|
|
|
_HF_ARCH_DICT = { |
|
|
|
'roberta': { |
|
'config_names': { |
|
'context_length': 'max_position_embeddings', |
|
'vocab_size': 'vocab_size', |
|
'width': 'hidden_size', |
|
'heads': 'num_attention_heads', |
|
'layers': 'num_hidden_layers', |
|
'layer_attr': 'layer', |
|
'token_embeddings_attr': 'embeddings', |
|
}, |
|
'pooler': 'mean_pooler', |
|
}, |
|
|
|
'xlm-roberta': { |
|
'config_names': { |
|
'context_length': 'max_position_embeddings', |
|
'vocab_size': 'vocab_size', |
|
'width': 'hidden_size', |
|
'heads': 'num_attention_heads', |
|
'layers': 'num_hidden_layers', |
|
'layer_attr': 'layer', |
|
'token_embeddings_attr': 'embeddings', |
|
}, |
|
'pooler': 'mean_pooler', |
|
}, |
|
|
|
'mt5': { |
|
'config_names': { |
|
|
|
|
|
|
|
'context_length': '', |
|
'vocab_size': 'vocab_size', |
|
'width': 'd_model', |
|
'heads': 'num_heads', |
|
'layers': 'num_layers', |
|
'layer_attr': 'block', |
|
'token_embeddings_attr': 'embed_tokens', |
|
}, |
|
'pooler': 'mean_pooler', |
|
}, |
|
|
|
'bert': { |
|
'config_names': { |
|
'context_length': 'max_position_embeddings', |
|
'vocab_size': 'vocab_size', |
|
'width': 'hidden_size', |
|
'heads': 'num_attention_heads', |
|
'layers': 'num_hidden_layers', |
|
}, |
|
'pooler': 'cls_pooler', |
|
}, |
|
|
|
'm2m_100': { |
|
'config_names': { |
|
'context_length': 'max_position_embeddings', |
|
'vocab_size': 'vocab_size', |
|
'width': 'd_model', |
|
'heads': 'encoder_attention_heads', |
|
'layers': 'encoder_layers', |
|
}, |
|
'pooler': 'cls_pooler', |
|
}, |
|
} |
|
|
|
|
|
""" |
|
Pooling functions |
|
""" |
|
|
|
_POOLERS = {} |
|
|
|
|
|
def _camel2snake(s): |
|
return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower() |
|
|
|
|
|
def register_pooler(cls): |
|
"""Decorator registering pooler class""" |
|
_POOLERS[_camel2snake(cls.__name__)] = cls |
|
return cls |
|
|
|
|
|
@register_pooler |
|
class MeanPooler(nn.Module): |
|
"""Mean pooling""" |
|
|
|
@staticmethod |
|
def forward(x: BaseModelOutput, attention_mask: torch.Tensor): |
|
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1) |
|
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True) |
|
|
|
|
|
@register_pooler |
|
class MaxPooler(nn.Module): |
|
""" |
|
Max pooling |
|
""" |
|
|
|
@staticmethod |
|
def forward(x: BaseModelOutput, attention_mask: torch.Tensor): |
|
masked_output = x.last_hidden_state.masked_fill( |
|
attention_mask.unsqueeze(-1), -torch.inf |
|
) |
|
return masked_output.max(1).values |
|
|
|
|
|
@register_pooler |
|
class ClsPooler(nn.Module): |
|
""" |
|
CLS token pooling |
|
""" |
|
|
|
def __init__(self, use_pooler_output=True): |
|
super().__init__() |
|
self.cls_token_position = 0 |
|
self.use_pooler_output = use_pooler_output |
|
|
|
def forward(self, x: BaseModelOutput, _: torch.Tensor): |
|
if ( |
|
self.use_pooler_output |
|
and isinstance( |
|
x, |
|
( |
|
BaseModelOutputWithPooling, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
), |
|
) |
|
and (x.pooler_output is not None) |
|
): |
|
return x.pooler_output |
|
|
|
return x.last_hidden_state[:, self.cls_token_position, :] |
|
|
|
|
|
""" |
|
HF text model |
|
""" |
|
|
|
|
|
class HFTextEncoder(nn.Module): |
|
output_tokens: torch.jit.Final[bool] |
|
|
|
def __init__( |
|
self, |
|
model_name_or_path: str, |
|
output_dim: int, |
|
config: PretrainedConfig = None, |
|
pooler_type: str = None, |
|
proj_type: str = None, |
|
proj_bias: bool = False, |
|
pretrained: bool = True, |
|
output_tokens: bool = False, |
|
trust_remote_code: bool = False, |
|
revision: Optional[str] = None, |
|
model_config_kwargs: Optional[Dict] = None, |
|
): |
|
super().__init__() |
|
self.output_tokens = output_tokens |
|
self.output_dim = output_dim |
|
|
|
|
|
uses_transformer_pooler = pooler_type == 'cls_pooler' |
|
model_config_kwargs = model_config_kwargs or {} |
|
|
|
if config is None: |
|
self.config = AutoConfig.from_pretrained( |
|
model_name_or_path, |
|
trust_remote_code=trust_remote_code, |
|
code_revision=revision, |
|
) |
|
self.config.update(model_config_kwargs) |
|
create_func, model_args = ( |
|
(AutoModel.from_pretrained, model_name_or_path) |
|
if pretrained |
|
else (AutoModel.from_config, self.config) |
|
) |
|
|
|
|
|
if ( |
|
hasattr(self.config, 'is_encoder_decoder') |
|
and self.config.is_encoder_decoder |
|
): |
|
self.transformer = create_func(model_args) |
|
self.transformer = self.transformer.encoder |
|
else: |
|
self.transformer = create_func( |
|
model_args, |
|
trust_remote_code=trust_remote_code, |
|
add_pooling_layer=uses_transformer_pooler, |
|
code_revision=revision, |
|
) |
|
else: |
|
self.config = config |
|
self.config.update(model_config_kwargs) |
|
self.transformer = AutoModel.from_config(self.config) |
|
|
|
if pooler_type is None: |
|
pooler_type = _HF_ARCH_DICT[self.config.model_type]['pooler'] |
|
|
|
|
|
|
|
self.vocab_size = getattr(self.config, 'vocab_size', 0) |
|
self.context_length = getattr(self.config, 'max_position_embeddings', 0) |
|
|
|
self.pooler = _POOLERS[pooler_type]() |
|
|
|
d_model = getattr( |
|
self.config, _HF_ARCH_DICT[self.config.model_type]['config_names']['width'] |
|
) |
|
if (d_model == output_dim) and (proj_type is None): |
|
self.proj = nn.Identity() |
|
elif proj_type == 'linear': |
|
self.proj = nn.Linear(d_model, output_dim, bias=proj_bias) |
|
elif proj_type == 'mlp': |
|
hidden_size = (d_model + output_dim) // 2 |
|
self.proj = nn.Sequential( |
|
nn.Linear(d_model, hidden_size, bias=proj_bias), |
|
nn.GELU(), |
|
nn.Linear(hidden_size, output_dim, bias=proj_bias), |
|
) |
|
|
|
def forward(self, x: torch.Tensor): |
|
attn_mask = (x != self.config.pad_token_id).long() |
|
out = self.transformer(input_ids=x, attention_mask=attn_mask) |
|
pooled_out = self.pooler(out, attn_mask) |
|
projected = self.proj(pooled_out) |
|
|
|
seq_len = out.last_hidden_state.shape[1] |
|
tokens = ( |
|
out.last_hidden_state[ |
|
:, torch.arange(seq_len) != self.pooler.cls_token_position, : |
|
] |
|
if isinstance(self.pooler, ClsPooler) |
|
else out.last_hidden_state |
|
) |
|
|
|
if self.output_tokens: |
|
return projected, tokens |
|
return projected |
|
|
|
def lock(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True): |
|
if not unlocked_layers: |
|
for n, p in self.transformer.named_parameters(): |
|
p.requires_grad = ( |
|
(not freeze_layer_norm) if 'LayerNorm' in n.split('.') else False |
|
) |
|
return |
|
|
|
encoder = ( |
|
self.transformer.encoder |
|
if hasattr(self.transformer, 'encoder') |
|
else self.transformer |
|
) |
|
layer_list = getattr( |
|
encoder, _HF_ARCH_DICT[self.config.model_type]['config_names']['layer_attr'] |
|
) |
|
print(f'Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model') |
|
embeddings = getattr( |
|
self.transformer, |
|
_HF_ARCH_DICT[self.config.model_type]['config_names'][ |
|
'token_embeddings_attr' |
|
], |
|
) |
|
modules = [embeddings, *layer_list][:-unlocked_layers] |
|
|
|
for module in modules: |
|
for n, p in module.named_parameters(): |
|
p.requires_grad = ( |
|
(not freeze_layer_norm) if 'LayerNorm' in n.split('.') else False |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, _=True): |
|
self.transformer.gradient_checkpointing_enable() |
|
|
|
def init_parameters(self): |
|
pass |
|
|
|
|
|
""" |
|
HF vision model |
|
""" |
|
|
|
|
|
class HFVisionEncoder(nn.Module): |
|
output_tokens: torch.jit.Final[bool] |
|
|
|
def __init__( |
|
self, |
|
model_name_or_path: str, |
|
image_size: int, |
|
output_dim: int, |
|
config: PretrainedConfig = None, |
|
pool_type: str = 'tok', |
|
proj_type: Optional[str] = None, |
|
proj_bias: bool = False, |
|
attn_drop: float = 0.0, |
|
hidden_drop: float = 0.0, |
|
drop_path: Optional[float] = None, |
|
pretrained: bool = True, |
|
output_tokens: bool = False, |
|
trust_remote_code: bool = False, |
|
): |
|
super().__init__() |
|
self.output_tokens = output_tokens |
|
self.output_dim = output_dim |
|
self.image_size = (image_size, image_size) |
|
|
|
if config is None: |
|
self.config = AutoConfig.from_pretrained( |
|
model_name_or_path, |
|
trust_remote_code=trust_remote_code, |
|
hidden_dropout_prob=hidden_drop, |
|
attention_probs_dropout_prob=attn_drop, |
|
drop_path_rate=drop_path, |
|
) |
|
create_func, model_args = ( |
|
(AutoModel.from_pretrained, model_name_or_path) |
|
if pretrained |
|
else (AutoModel.from_config, self.config) |
|
) |
|
self.transformer = create_func( |
|
model_args, |
|
trust_remote_code=trust_remote_code, |
|
hidden_dropout_prob=hidden_drop, |
|
attention_probs_dropout_prob=attn_drop, |
|
) |
|
else: |
|
self.config = config |
|
self.transformer = AutoModel.from_config(config) |
|
|
|
if 'dinov2' in model_name_or_path: |
|
self.transformer.embeddings.mask_token.requires_grad = False |
|
|
|
assert pool_type in ('tok', 'avg', 'none') |
|
self.pool_type = pool_type |
|
|
|
d_model = self.config.hidden_size |
|
if (d_model == output_dim) and (proj_type is None): |
|
self.proj = nn.Identity() |
|
elif proj_type == 'linear': |
|
self.proj = nn.Linear(d_model, output_dim, bias=proj_bias) |
|
elif proj_type == 'mlp': |
|
hidden_size = (d_model + output_dim) // 2 |
|
self.proj = nn.Sequential( |
|
nn.Linear(d_model, hidden_size, bias=proj_bias), |
|
nn.GELU(), |
|
nn.Linear(hidden_size, output_dim, bias=proj_bias), |
|
) |
|
|
|
def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
if self.pool_type == 'avg': |
|
pooled, tokens = x[:, 1:].mean(dim=1), x[:, 1:] |
|
elif self.pool_type == 'tok': |
|
pooled, tokens = x[:, 0], x[:, 1:] |
|
else: |
|
pooled = tokens = x |
|
|
|
return pooled, tokens |
|
|
|
def forward(self, x: torch.Tensor): |
|
|
|
x = self.transformer(x)[0] |
|
pooled, tokens = self._global_pool(x) |
|
projected = self.proj(pooled) |
|
|
|
return projected |
|
|
|
def lock(self, unlocked_layers: int = 0, freeze_bn_stats: bool = True): |
|
if not unlocked_layers: |
|
for n, p in self.transformer.named_parameters(): |
|
p.requires_grad = ( |
|
(not freeze_bn_stats) if 'LayerNorm' in n.split('.') else False |
|
) |
|
return |
|
|
|
|
|
encoder = ( |
|
self.transformer.encoder |
|
if hasattr(self.transformer, 'encoder') |
|
else self.transformer |
|
) |
|
layer_list = getattr( |
|
encoder, _HF_ARCH_DICT[self.config.model_type]['config_names']['layer_attr'] |
|
) |
|
print(f'Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model') |
|
embeddings = getattr( |
|
self.transformer, |
|
_HF_ARCH_DICT[self.config.model_type]['config_names'][ |
|
'token_embeddings_attr' |
|
], |
|
) |
|
modules = [embeddings, *layer_list][:-unlocked_layers] |
|
|
|
for module in modules: |
|
for n, p in module.named_parameters(): |
|
p.requires_grad = ( |
|
(not freeze_bn_stats) if 'LayerNorm' in n.split('.') else False |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, *_, **__): |
|
self.transformer.gradient_checkpointing_enable() |
|
|
|
def init_parameters(self): |
|
pass |
|
|