File size: 9,448 Bytes
bbec003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import pickle
import torch
import numpy as np
import pandas as pd
import scipy.sparse as sp
from scipy.sparse import linalg

class DataLoader(object):
    def __init__(self, xs, ys, batch_size, pad_with_last_sample=True, shuffle=False):
        """

        :param xs:
        :param ys:
        :param batch_size:
        :param pad_with_last_sample: pad with the last sample to make number of samples divisible to batch_size.
        """
        self.batch_size = batch_size
        self.current_ind = 0
        if pad_with_last_sample:
            num_padding = (batch_size - (len(xs) % batch_size)) % batch_size
            x_padding = np.repeat(xs[-1:], num_padding, axis=0)
            y_padding = np.repeat(ys[-1:], num_padding, axis=0)
            xs = np.concatenate([xs, x_padding], axis=0)
            ys = np.concatenate([ys, y_padding], axis=0)
        self.size = len(xs)
        self.num_batch = int(self.size // self.batch_size)
        if shuffle:
            permutation = np.random.permutation(self.size)
            xs, ys = xs[permutation], ys[permutation]
        self.xs = xs
        self.ys = ys

    def get_iterator(self):
        self.current_ind = 0

        def _wrapper():
            while self.current_ind < self.num_batch:
                start_ind = self.batch_size * self.current_ind
                end_ind = min(self.size, self.batch_size * (self.current_ind + 1))
                x_i = self.xs[start_ind: end_ind, ...]
                y_i = self.ys[start_ind: end_ind, ...]
                yield (x_i, y_i)
                self.current_ind += 1

        return _wrapper()
    
class StandardScaler():
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def transform(self, data):
        return (data - self.mean) / self.std

    def inverse_transform(self, data):
        return (data * self.std) + self.mean
    
def getTimestamp(data):
    num_samples, num_nodes = data.shape
    time_ind = (data.index.values - data.index.values.astype("datetime64[D]")) / np.timedelta64(1, "D")
    time_in_day = np.tile(time_ind, [num_nodes,1]).transpose((1, 0))
    return time_in_day

def getDayTimestamp(data):
    # 288 timeslots each day for dataset has 5 minutes time interval.
    df = pd.DataFrame({'timestamp':data.index.values})
    df['weekdaytime'] = df['timestamp'].dt.weekday * 288 + (df['timestamp'].dt.hour * 60 + df['timestamp'].dt.minute)//5
    df['weekdaytime'] = df['weekdaytime'] / df['weekdaytime'].max()
    num_samples, num_nodes = data.shape
    time_ind = df['weekdaytime'].values
    time_ind_node = np.tile(time_ind, [num_nodes,1]).transpose((1, 0))
    return time_ind_node

def getDayTimestamp_(start, end, freq, num_nodes):
    # 288 timeslots each day for dataset has 5 minutes time interval.
    df = pd.DataFrame({'timestamp':pd.date_range(start=start, end=end, freq=freq)})
    df['weekdaytime'] = df['timestamp'].dt.weekday * 288 + (df['timestamp'].dt.hour * 60 + df['timestamp'].dt.minute)//5
    df['weekdaytime'] = df['weekdaytime'] / df['weekdaytime'].max()
    time_ind = df['weekdaytime'].values
    time_ind_node = np.tile(time_ind, [num_nodes, 1]).transpose((1, 0))
    return time_ind_node

def masked_mse(preds, labels, null_val=1e-3):
    if np.isnan(null_val):
        mask = ~torch.isnan(labels)
    else:
        mask = (labels > null_val)
    mask = mask.float()
    mask /= torch.mean((mask))
    mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
    loss = (preds-labels)**2
    loss = loss * mask
    loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
    return torch.mean(loss)

def masked_rmse(preds, labels, null_val=1e-3):
    return torch.sqrt(masked_mse(preds=preds, labels=labels, null_val=null_val))


def masked_mae(preds, labels, null_val=1e-3):
    if np.isnan(null_val):
        mask = ~torch.isnan(labels)
    else:
        mask = (labels > null_val)
    mask = mask.float()
    mask /=  torch.mean((mask))
    mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
    loss = torch.abs(preds-labels)
    loss = loss * mask
    loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
    return torch.mean(loss)


def masked_mape(preds, labels, null_val=1e-3):
    if np.isnan(null_val):
        mask = ~torch.isnan(labels)
    else:
        mask = (labels > null_val)
    mask = mask.float()
    mask /=  torch.mean((mask))
    mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
    loss = torch.abs(preds-labels)/labels
    loss = loss * mask
    loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
    return torch.mean(loss)

# DCRNN
def masked_mae_loss(y_pred, y_true):
    mask = (y_true != 0).float()
    mask /= mask.mean()
    loss = torch.abs(y_pred - y_true)
    loss = loss * mask
    # trick for nans: https://discuss.pytorch.org/t/how-to-set-nan-in-tensor-to-0/3918/3
    loss[loss != loss] = 0
    return loss.mean()

def masked_mape_loss(y_pred, y_true):
    mask = (y_true != 0).float()
    mask /= mask.mean()
    loss = torch.abs(torch.div(y_true - y_pred, y_true))
    loss = loss * mask
    # trick for nans: https://discuss.pytorch.org/t/how-to-set-nan-in-tensor-to-0/3918/3
    loss[loss != loss] = 0
    return loss.mean()

def masked_rmse_loss(y_pred, y_true):
    mask = (y_true != 0).float()
    mask /= mask.mean()
    loss = torch.pow(y_true - y_pred, 2)
    loss = loss * mask
    # trick for nans: https://discuss.pytorch.org/t/how-to-set-nan-in-tensor-to-0/3918/3
    loss[loss != loss] = 0
    return torch.sqrt(loss.mean())

def masked_mse_loss(y_pred, y_true):
    mask = (y_true != 0).float()
    mask /= mask.mean()
    loss = torch.pow(y_true - y_pred, 2)
    loss = loss * mask
    # trick for nans: https://discuss.pytorch.org/t/how-to-set-nan-in-tensor-to-0/3918/3
    loss[loss != loss] = 0
    return loss.mean()

def load_pickle(pickle_file):
    try:
        with open(pickle_file, 'rb') as f:
            pickle_data = pickle.load(f)
    except UnicodeDecodeError as e:
        with open(pickle_file, 'rb') as f:
            pickle_data = pickle.load(f, encoding='latin1')
    except Exception as e:
        print('Unable to load data ', pickle_file, ':', e)
        raise
    return pickle_data

def sym_adj(adj):
    """Symmetrically normalize adjacency matrix."""
    adj = sp.coo_matrix(adj)
    rowsum = np.array(adj.sum(1))
    d_inv_sqrt = np.power(rowsum, -0.5).flatten()
    d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
    d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
    return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).astype(np.float32).todense()

def asym_adj(adj):
    adj = sp.coo_matrix(adj)
    rowsum = np.array(adj.sum(1)).flatten()
    d_inv = np.power(rowsum, -1).flatten()
    d_inv[np.isinf(d_inv)] = 0.
    d_mat = sp.diags(d_inv)
    return d_mat.dot(adj).astype(np.float32).todense()

def calculate_normalized_laplacian(adj):
    """
    # L = D^-1/2 (D-A) D^-1/2 = I - D^-1/2 A D^-1/2
    # D = diag(A 1)
    :param adj:
    :return:
    """
    adj = sp.coo_matrix(adj)
    d = np.array(adj.sum(1))
    d_inv_sqrt = np.power(d, -0.5).flatten()
    d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
    d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
    normalized_laplacian = sp.eye(adj.shape[0]) - adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
    return normalized_laplacian

def calculate_random_walk_matrix(adj_mx):
    adj_mx = sp.coo_matrix(adj_mx)
    d = np.array(adj_mx.sum(1))
    d_inv = np.power(d, -1).flatten()
    d_inv[np.isinf(d_inv)] = 0.
    d_mat_inv = sp.diags(d_inv)
    random_walk_mx = d_mat_inv.dot(adj_mx).tocoo()
    return random_walk_mx

def calculate_reverse_random_walk_matrix(adj_mx):
    return calculate_random_walk_matrix(np.transpose(adj_mx))

def calculate_scaled_laplacian(adj_mx, lambda_max=2, undirected=True):
    if undirected:
        adj_mx = np.maximum.reduce([adj_mx, adj_mx.T])
    L = calculate_normalized_laplacian(adj_mx)
    if lambda_max is None:
        lambda_max, _ = linalg.eigsh(L, 1, which='LM')
        lambda_max = lambda_max[0]
    L = sp.csr_matrix(L)
    M, _ = L.shape
    I = sp.identity(M, format='csr', dtype=L.dtype)
    L = (2 / lambda_max * L) - I
    return L.astype(np.float32)

def load_adj(pkl_filename, adjtype):
    if "PEMS0" in pkl_filename or "D7" in pkl_filename:
        adj_mx = load_pickle(pkl_filename)
    else:
        sensor_ids, sensor_id_to_ind, adj_mx = load_pickle(pkl_filename)
    if adjtype == "scalap":
        adj = [calculate_scaled_laplacian(adj_mx)]
    elif adjtype == "normlap":
        adj = [calculate_normalized_laplacian(adj_mx).astype(np.float32).todense()]
    elif adjtype == "symadj":
        adj = [sym_adj(adj_mx)]
    elif adjtype == "transition":
        adj = [asym_adj(adj_mx)]
    elif adjtype == "doubletransition":
        adj = [asym_adj(adj_mx), asym_adj(np.transpose(adj_mx))]
    elif adjtype == "identity":
        adj = [np.diag(np.ones(adj_mx.shape[0])).astype(np.float32)]
    else:
        error = 0
        assert error, "adj type not defined"
    return adj

def print_params(model):
    # print trainable params
    param_count = 0
    print('Trainable parameter list:')
    for name, param in model.named_parameters():
        if param.requires_grad:
            print(name, param.shape, param.numel())
            param_count += param.numel()
    print(f'\n In total: {param_count} trainable parameters. \n')
    return