zephyr-ds / README.md
jikaixuan's picture
Model save
8c6b41c verified
|
raw
history blame
2.22 kB
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
model-index:
- name: zephyr-ds
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-ds
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6354
- Rewards/chosen: 0.0271
- Rewards/rejected: -0.0297
- Rewards/accuracies: 0.6260
- Rewards/margins: 0.0568
- Logps/rejected: -253.2359
- Logps/chosen: -269.2855
- Logits/rejected: -2.4958
- Logits/chosen: -2.4939
- Use Label: 18265.6758
- Pred Label: 13796.3242
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Use Label | Pred Label |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:----------:|:----------:|
| 0.6377 | 1.0 | 955 | 0.6354 | 0.0271 | -0.0297 | 0.6260 | 0.0568 | -253.2359 | -269.2855 | -2.4958 | -2.4939 | 17827.6758 | 13234.3242 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.1+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1