File size: 8,897 Bytes
b11ecdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch 
import torch.nn as nn
import math
from torch.nn.attention import SDPBackend, sdpa_kernel
from torch.nn import functional as F


class PrefixEncoder(torch.nn.Module):
    def __init__(self,config):
        super(PrefixEncoder,self).__init__()
        self.config=config
        self.device=config.device
        self.dtype=config.dtype
        self.num_virtual_tokens=config.num_virtual_tokens
        self.token_dim=config.token_dim
        self.encoder_hidden_size=config.encoder_hidden_size
        self.num_layers=config.num_layers
        self.prefix_embedding=nn.Parameter(torch.empty(1,self.num_virtual_tokens,self.num_layers*2*self.token_dim,device=config.device,dtype=config.dtype),requires_grad=False)
    def forward(self,input_ids,batch_size):
        prefix_embedding=self.prefix_embedding
        prefix_embedding=prefix_embedding.expand(batch_size,self.num_virtual_tokens,self.num_layers*2*self.token_dim)
        prefix_embedding=prefix_embedding.reshape(batch_size,self.num_virtual_tokens,self.num_layers,2,self.token_dim)
        prefix_embedding=prefix_embedding.permute(3,2,0,1,4)
        k,v=prefix_embedding.chunk(2,dim=0)
        return (k.squeeze(0),v.squeeze(0))


class Transformer(nn.Module):
    def __init__(self,config):
        super(Transformer,self).__init__()
        self.resblocks=nn.ModuleList([ResidualAttentionBlock(config) for _ in range(config.num_layers)])
        self.prefix=PrefixEncoder(config)
        prefix_tokens=torch.arange(0,config.num_virtual_tokens,device=config.device,dtype=torch.long)
        self.register_buffer("prefix_tokens",prefix_tokens)
    def forward(self,hidden_state,use_emotion):
        if use_emotion:
            #print("激活text transformer prefix.")
            b,n,h=hidden_state.shape
            prefix_k,prefix_v=self.prefix(self.prefix_tokens,b)
            for index,resblock in enumerate(self.resblocks):
                hidden_state=resblock(hidden_state,prefix_k[index],prefix_v[index])
            return hidden_state
        else:
            for index,resblock in enumerate(self.resblocks):
                hidden_state=resblock(hidden_state)
            return hidden_state
            





class ResidualAttentionBlock(nn.Module):
    def __init__(self,config):
        super(ResidualAttentionBlock,self).__init__()
        self.ln_1=nn.LayerNorm(config.hidden_size,eps=config.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype)
        self.ln_2=nn.LayerNorm(config.hidden_size,eps=config.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype)
        #self.attn=nn.MultiheadAttention(config.hidden_size,config.num_heads,device=config.device,dtype=config.dtype)
        self.attn=MultiHeadAttention(config)
        self.mlp=MLP(config)
    def forward(self,hidden_state,prefix_k=None,prefix_v=None):
        residual=hidden_state
        hidden_state=self.ln_1(hidden_state)
        hidden_state=self.attn(hidden_state,prefix_k,prefix_v)
        hidden_state=residual+hidden_state
        residual=hidden_state
        hidden_state=self.ln_2(hidden_state)
        hidden_state=self.mlp(hidden_state)
        hidden_state=residual+hidden_state
        return hidden_state

class MultiHeadAttention(nn.Module):
    def __init__(self,config):
        super(MultiHeadAttention,self).__init__()
        self.hidden_size=config.hidden_size
        self.num_heads=config.num_heads
        self.head_size=self.hidden_size//self.num_heads
        #nn.Parameter包含weight和bias可训练参数
        self.in_proj_weight=nn.Parameter(torch.empty(3*config.hidden_size,config.hidden_size,device=config.device,dtype=config.dtype),requires_grad=False)
        self.in_proj_bias=nn.Parameter(torch.empty(3*config.hidden_size,device=config.device,dtype=config.dtype),requires_grad=False)
        #self.q_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device)
        #self.k_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device)
        #self.v_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device)
        self.out_proj=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device,dtype=config.dtype)
    def forward(self,hidden_state,prefix_k=None,prefix_v=None):
        b,n,c=hidden_state.shape
        #q=self.q_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,1,3)
        #k=self.k_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,3,1)
        #v=self.v_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,1,3)
        q,k,v=(torch.matmul(hidden_state,self.in_proj_weight.T)+self.in_proj_bias.expand(b,n,-1)).chunk(3,dim=-1)
        if prefix_k is not None and prefix_v is not None:
            #将前缀插入到序列之前
            k=torch.cat((prefix_k,k),dim=1)
            v=torch.cat((prefix_v,v),dim=1)
            #print("model origin k :",k[:,0,0])
        bk,nk,hk=k.shape
        bq,nq,hq=q.shape
        q=q.view(bq,nq,self.num_heads,self.head_size).permute(0,2,1,3)
        k=k.view(bk,nk,self.num_heads,self.head_size).permute(0,2,1,3)
        v=v.view(bk,nk,self.num_heads,self.head_size).permute(0,2,1,3)
        attention_logits=F.scaled_dot_product_attention(q, k, v)
        attention_logits=attention_logits.permute(0,2,1,3).contiguous().view(bk,nq,self.hidden_size)
        attention_output=self.out_proj(attention_logits)
        return attention_output


class GELU(nn.Module):
    """
    误差函数erf:
    erf(x)=2/sqrt(pi)*integral(exp(-t^2),t=0,x)
    其中t是一个虚拟变量,用于表示从0到x的积分范围内的每一个点,具体来说:
    x是误差函数的输入参数,表示积分的上限
    t是积分变量,它从0变化到x,在每个点上计算e-t^2的值
    e-t^2是被积函数,表示每个t点上的高斯分布的概率密度。
    通过积分,误差函数计算了从0到x的高斯分布的概率累积值,具体来说,误差函数的积分部分计算的是区间[0,x]内高斯分布的概率密度的积分
    """
    def forward(self,x):
        return 0.5*x*(1.0+torch.erf(x/torch.sqrt(2.0)))
    
class QuickGELU(nn.Module):
    def __init__(self):
        super(QuickGELU,self).__init__()
    def forward(self,x):
        old_dtype=x.dtype
        x=x.to(torch.float32)
        return (x*torch.sigmoid(1.702*x)).to(old_dtype)
    

class MLP(nn.Module):
    def __init__(self,config):
        super(MLP,self).__init__()
        self.hidden_size=config.hidden_size
        self.c_fc=nn.Linear(self.hidden_size,4*self.hidden_size,device=config.device,bias=True,dtype=config.dtype)
        self.gelu=QuickGELU()
        self.c_proj=nn.Linear(self.hidden_size*4,self.hidden_size,device=config.device,bias=True,dtype=config.dtype)
    def forward(self,hidden_state):
        hidden_state=self.c_fc(hidden_state)
        hidden_state=self.gelu(hidden_state)
        hidden_state=self.c_proj(hidden_state)
        return hidden_state
    
class Config:
    def __init__(self,vocab_size,max_position_embeddings,hidden_size,num_layers,num_heads,device,dtype):
        self.vocab_size=vocab_size
        self.max_position_embeddings=max_position_embeddings
        self.hidden_size=hidden_size
        self.num_layers=num_layers
        self.num_heads=num_heads
        self.device=device
        self.dtype=dtype
        self.norm_eps=1e-5
        self.num_virtual_tokens=20
        self.token_dim=hidden_size
        self.encoder_hidden_size=hidden_size
config=Config(
    vocab_size=49408,
    max_position_embeddings=77,
    hidden_size=512,
    num_layers=12,
    num_heads=8,
    device=torch.device('cuda:0'),
    dtype=torch.float16
)
class TextEncoder(nn.Module):
    def __init__(self,config):
        super(TextEncoder,self).__init__()
        self.token_embedding=nn.Embedding(config.vocab_size,config.hidden_size,device=config.device,dtype=config.dtype)
        self.positional_embedding=nn.Parameter(torch.zeros(config.max_position_embeddings,config.hidden_size,device=config.device,dtype=config.dtype),requires_grad=False)
        self.transformer=Transformer(config)
        self.ln_final=nn.LayerNorm(config.hidden_size,eps=config.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype)
    def forward(self,input_ids):
        b,n=input_ids.shape
        prompt_embedding,token_embeddings=self.token_embedding(input_ids)
        position_ids=torch.arange(n,device=config.device,dtype=config.dtype).unsqueeze(0).expand(b,n)
        position_embeddings=self.positional_embedding[position_ids]
        embeddings=token_embeddings+position_embeddings
        embeddings=torch.cat((prompt_embedding,embeddings),dim=1)
        embeddings=self.transformer(embeddings)
        embeddings=self.ln_final(embeddings)
        return embeddings
    
text_encoder=Transformer(config)