File size: 8,897 Bytes
b11ecdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import torch
import torch.nn as nn
import math
from torch.nn.attention import SDPBackend, sdpa_kernel
from torch.nn import functional as F
class PrefixEncoder(torch.nn.Module):
def __init__(self,config):
super(PrefixEncoder,self).__init__()
self.config=config
self.device=config.device
self.dtype=config.dtype
self.num_virtual_tokens=config.num_virtual_tokens
self.token_dim=config.token_dim
self.encoder_hidden_size=config.encoder_hidden_size
self.num_layers=config.num_layers
self.prefix_embedding=nn.Parameter(torch.empty(1,self.num_virtual_tokens,self.num_layers*2*self.token_dim,device=config.device,dtype=config.dtype),requires_grad=False)
def forward(self,input_ids,batch_size):
prefix_embedding=self.prefix_embedding
prefix_embedding=prefix_embedding.expand(batch_size,self.num_virtual_tokens,self.num_layers*2*self.token_dim)
prefix_embedding=prefix_embedding.reshape(batch_size,self.num_virtual_tokens,self.num_layers,2,self.token_dim)
prefix_embedding=prefix_embedding.permute(3,2,0,1,4)
k,v=prefix_embedding.chunk(2,dim=0)
return (k.squeeze(0),v.squeeze(0))
class Transformer(nn.Module):
def __init__(self,config):
super(Transformer,self).__init__()
self.resblocks=nn.ModuleList([ResidualAttentionBlock(config) for _ in range(config.num_layers)])
self.prefix=PrefixEncoder(config)
prefix_tokens=torch.arange(0,config.num_virtual_tokens,device=config.device,dtype=torch.long)
self.register_buffer("prefix_tokens",prefix_tokens)
def forward(self,hidden_state,use_emotion):
if use_emotion:
#print("激活text transformer prefix.")
b,n,h=hidden_state.shape
prefix_k,prefix_v=self.prefix(self.prefix_tokens,b)
for index,resblock in enumerate(self.resblocks):
hidden_state=resblock(hidden_state,prefix_k[index],prefix_v[index])
return hidden_state
else:
for index,resblock in enumerate(self.resblocks):
hidden_state=resblock(hidden_state)
return hidden_state
class ResidualAttentionBlock(nn.Module):
def __init__(self,config):
super(ResidualAttentionBlock,self).__init__()
self.ln_1=nn.LayerNorm(config.hidden_size,eps=config.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype)
self.ln_2=nn.LayerNorm(config.hidden_size,eps=config.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype)
#self.attn=nn.MultiheadAttention(config.hidden_size,config.num_heads,device=config.device,dtype=config.dtype)
self.attn=MultiHeadAttention(config)
self.mlp=MLP(config)
def forward(self,hidden_state,prefix_k=None,prefix_v=None):
residual=hidden_state
hidden_state=self.ln_1(hidden_state)
hidden_state=self.attn(hidden_state,prefix_k,prefix_v)
hidden_state=residual+hidden_state
residual=hidden_state
hidden_state=self.ln_2(hidden_state)
hidden_state=self.mlp(hidden_state)
hidden_state=residual+hidden_state
return hidden_state
class MultiHeadAttention(nn.Module):
def __init__(self,config):
super(MultiHeadAttention,self).__init__()
self.hidden_size=config.hidden_size
self.num_heads=config.num_heads
self.head_size=self.hidden_size//self.num_heads
#nn.Parameter包含weight和bias可训练参数
self.in_proj_weight=nn.Parameter(torch.empty(3*config.hidden_size,config.hidden_size,device=config.device,dtype=config.dtype),requires_grad=False)
self.in_proj_bias=nn.Parameter(torch.empty(3*config.hidden_size,device=config.device,dtype=config.dtype),requires_grad=False)
#self.q_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device)
#self.k_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device)
#self.v_linear=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device)
self.out_proj=nn.Linear(self.hidden_size,self.hidden_size,bias=True,device=config.device,dtype=config.dtype)
def forward(self,hidden_state,prefix_k=None,prefix_v=None):
b,n,c=hidden_state.shape
#q=self.q_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,1,3)
#k=self.k_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,3,1)
#v=self.v_linear(hidden_state).view(b,n,self.num_heads,self.head_size).permute(0,2,1,3)
q,k,v=(torch.matmul(hidden_state,self.in_proj_weight.T)+self.in_proj_bias.expand(b,n,-1)).chunk(3,dim=-1)
if prefix_k is not None and prefix_v is not None:
#将前缀插入到序列之前
k=torch.cat((prefix_k,k),dim=1)
v=torch.cat((prefix_v,v),dim=1)
#print("model origin k :",k[:,0,0])
bk,nk,hk=k.shape
bq,nq,hq=q.shape
q=q.view(bq,nq,self.num_heads,self.head_size).permute(0,2,1,3)
k=k.view(bk,nk,self.num_heads,self.head_size).permute(0,2,1,3)
v=v.view(bk,nk,self.num_heads,self.head_size).permute(0,2,1,3)
attention_logits=F.scaled_dot_product_attention(q, k, v)
attention_logits=attention_logits.permute(0,2,1,3).contiguous().view(bk,nq,self.hidden_size)
attention_output=self.out_proj(attention_logits)
return attention_output
class GELU(nn.Module):
"""
误差函数erf:
erf(x)=2/sqrt(pi)*integral(exp(-t^2),t=0,x)
其中t是一个虚拟变量,用于表示从0到x的积分范围内的每一个点,具体来说:
x是误差函数的输入参数,表示积分的上限
t是积分变量,它从0变化到x,在每个点上计算e-t^2的值
e-t^2是被积函数,表示每个t点上的高斯分布的概率密度。
通过积分,误差函数计算了从0到x的高斯分布的概率累积值,具体来说,误差函数的积分部分计算的是区间[0,x]内高斯分布的概率密度的积分
"""
def forward(self,x):
return 0.5*x*(1.0+torch.erf(x/torch.sqrt(2.0)))
class QuickGELU(nn.Module):
def __init__(self):
super(QuickGELU,self).__init__()
def forward(self,x):
old_dtype=x.dtype
x=x.to(torch.float32)
return (x*torch.sigmoid(1.702*x)).to(old_dtype)
class MLP(nn.Module):
def __init__(self,config):
super(MLP,self).__init__()
self.hidden_size=config.hidden_size
self.c_fc=nn.Linear(self.hidden_size,4*self.hidden_size,device=config.device,bias=True,dtype=config.dtype)
self.gelu=QuickGELU()
self.c_proj=nn.Linear(self.hidden_size*4,self.hidden_size,device=config.device,bias=True,dtype=config.dtype)
def forward(self,hidden_state):
hidden_state=self.c_fc(hidden_state)
hidden_state=self.gelu(hidden_state)
hidden_state=self.c_proj(hidden_state)
return hidden_state
class Config:
def __init__(self,vocab_size,max_position_embeddings,hidden_size,num_layers,num_heads,device,dtype):
self.vocab_size=vocab_size
self.max_position_embeddings=max_position_embeddings
self.hidden_size=hidden_size
self.num_layers=num_layers
self.num_heads=num_heads
self.device=device
self.dtype=dtype
self.norm_eps=1e-5
self.num_virtual_tokens=20
self.token_dim=hidden_size
self.encoder_hidden_size=hidden_size
config=Config(
vocab_size=49408,
max_position_embeddings=77,
hidden_size=512,
num_layers=12,
num_heads=8,
device=torch.device('cuda:0'),
dtype=torch.float16
)
class TextEncoder(nn.Module):
def __init__(self,config):
super(TextEncoder,self).__init__()
self.token_embedding=nn.Embedding(config.vocab_size,config.hidden_size,device=config.device,dtype=config.dtype)
self.positional_embedding=nn.Parameter(torch.zeros(config.max_position_embeddings,config.hidden_size,device=config.device,dtype=config.dtype),requires_grad=False)
self.transformer=Transformer(config)
self.ln_final=nn.LayerNorm(config.hidden_size,eps=config.norm_eps,elementwise_affine=True,device=config.device,dtype=config.dtype)
def forward(self,input_ids):
b,n=input_ids.shape
prompt_embedding,token_embeddings=self.token_embedding(input_ids)
position_ids=torch.arange(n,device=config.device,dtype=config.dtype).unsqueeze(0).expand(b,n)
position_embeddings=self.positional_embedding[position_ids]
embeddings=token_embeddings+position_embeddings
embeddings=torch.cat((prompt_embedding,embeddings),dim=1)
embeddings=self.transformer(embeddings)
embeddings=self.ln_final(embeddings)
return embeddings
text_encoder=Transformer(config) |